
Chapter 27
Graph Games and Reactive Synthesis

Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann

Abstract Graph-based games are an important tool in computer science. They have
applications in synthesis, verification, refinement, and far beyond. We review graph-
based games with objectives on infinite plays. We give definitions and algorithms
to solve the games and to give a winning strategy. The objectives we consider are
mostly Boolean, but we also look at quantitative graph-based games and their ob-
jectives. Synthesis aims to turn temporal logic specifications into correct reactive
systems. We explain the reduction of synthesis to graph-based games (or equiva-
lently tree automata) using synthesis of LTL specifications as an example. We treat
the classical approach that uses determinization of parity automata and more mod-
ern approaches.

27.1 Introduction

Reactive synthesis is the problem of automatically constructing a correct reactive
system from a given specification [75]. Graph games (or, equivalently, tree au-
tomata) are a central tool in solving the synthesis problems [30, 101]. In this chap-
ter, we shall review the theory of games and synthesis. Besides reactive synthe-
sis, Syntax-Guided Synthesis (SYGUS) has become a popular and promising ap-
proach to automatically generate (parts of) programs from specifications. SYGUS
differs from reactive synthesis in its goals and especially in the techniques it uses:
it is typically done inductively instead of deductively, and is often driven by coun-
terexamples (hence the related term Counterexample-Guided Inductive Synthesis or
CEGIS). We refer the interested reader to [8] and the references contained in that
paper.

R. Bloem (B)
Graz University of Technology, Graz, Austria
e-mail: roderick.bloem@iaik.tugraz.at

K. Chatterjee
IST Austria, Klosterneuburg, Austria

B. Jobstmann
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

© Springer International Publishing AG, part of Springer Nature 2018
E.M. Clarke et al. (eds.), Handbook of Model Checking,
DOI 10.1007/978-3-319-10575-8_27

921

mailto:roderick.bloem@iaik.tugraz.at
http://dx.doi.org/10.1007/978-3-319-10575-8_27

922 R. Bloem et al.

We consider two-player perfect-information nonterminating games played on
graphs, that proceed for an infinite number of rounds. The state of a game is a
vertex of a graph. The graph is partitioned into player-1 states and player-2 states:
in player-1 states, player 1 chooses the successor vertex; in player-2 states, player 2
chooses the successor vertex. In each round, the state changes along an edge of
the graph to a successor vertex. Thus, the outcome of the game being played for
an infinite number of rounds is an infinite path through the graph. These games
play a central role in several areas of computer science. One important application
arises when the vertices and edges of a graph represent the states and transitions of
a reactive system, and the two players represent controllable versus uncontrollable
decisions during the execution of the system, which corresponds to the synthesis
problem for reactive systems. Game-theoretic formulations have proved useful not
only for synthesis, but also for the modeling [1, 79], refinement [104], verifica-
tion [6, 9], testing [17], and compatibility checking [3, 4] of reactive systems. The
use of ω-regular objectives is natural in these application contexts. This is because
the winning conditions of the games arise from requirements specifications for reac-
tive systems, and the ω-regular sets of infinite paths provide an important and robust
paradigm for such specifications [124].

Synthesis is the problem of automatically constructing a correct reactive system
from a given specification. Thus, synthesis goes beyond verification, in which both
a specification and an implementation have to be given, by automatically deriving
the latter from the former. Synthesis is thus a fundamental approach that aims at
moving the construction of reactive systems from the imperative to the declarative
level. If one is convinced that a complete specification should be written before the
implementation is constructed, synthesis is a natural and important endeavor.

In this chapter, we employ the term synthesis exclusively in the setting of syn-
chronous reactive systems, which maintain a constant interaction with the environ-
ment. We will assume that both the inputs and the outputs of such a system are
Boolean. One way to specify the behavior of such systems is as a set of infinite
words over the input and output valuations. The distinction between inputs and out-
puts is crucial: outputs are under direct control of the system whereas inputs are
not. Thus, at any point in time, we must find some output that works for all inputs.
More precisely, given a finite input sequence, we must find some output that allows
a correct execution for any possible future input.

The synthesis question and the corresponding decidability problem, called re-
alizability, were originally posed by Church [75], who used the monadic second-
order logic of one successor (S1S) as a specification language. The problem was
solved by Rabin [146] and by Büchi and Landweber [30] in the late 1960s. In this
chapter, we will focus on the more modern Linear Temporal Logic (LTL) [141].
Initial work on synthesizing systems from temporal specifications assumed cooper-
ative environments and reduced the synthesis problem to satisfiability [76, 84, 126].
The problem of synthesizing systems from specifications in LTL (in adversary en-
vironments, which are the focus of this chapter) was studied in [142], where it was
shown that the problem is complete for 2EXPTIME. Even though the complexity
of the synthesis problem from LTL is significantly lower than that from S1S, which

27 Graph Games and Reactive Synthesis 923

is non-elementary [166], it discouraged researchers and led to few developments
for several decades. This relative silence has been followed by a flurry of activity
since around 2005. In this chapter, we will give an overview of both the classical
approach to LTL synthesis and the relatively practical approaches that have been
proposed recently.

The question of synthesis can be generalized to controller synthesis: the question
of finishing an incompletely specified system. This problem was first studied by Ra-
madge and Wonham [148] under the name of Synthesis of Discrete Event Systems.
The question here is to control a plant in such a way that it fulfills its specification.
Again, we must distinguish between the inputs of the plant, which are determined
by an uncontrollable environment, and its control parameter: the control parameter
must be adjusted continually in such a way that the plant works correctly for any
input. The original approach aimed at safety properties only, but can be extended to
more expressive specification formalisms using the same techniques that are used in
synthesis. Note that in synthesis we have only a specification, whereas in controller
synthesis we have both a specification and an incomplete implementation. The dis-
tinction is somewhat fluid as implementations can be expressed in temporal logic
(using extra variables), while specifications can be expressed as automata, which
are a form of transition systems.

A standard approach to verification is automata theoretic: we build an automaton
corresponding to the negation of the specification and construct the product with the
system that we wish to verify. The system can evolve in several ways, depending
on the inputs, which means that the product is nondeterministic, and multiple paths
must be searched for an incorrect execution. In synthesis, in contrast, we have two
types of freedom: the freedom to choose the inputs, which we cannot control, and
the freedom to choose the outputs, which are under our control. Thus, instead of a
nondeterministic automaton, the natural model here is a game, or more precisely, an
infinite zero-sum graph-based game with two players, which is won iff the specifi-
cation is satisfied. (Equivalently, we can use tree automata.)

In the next section, we will discuss game theory, with a focus on the games that
arise in synthesis settings. We will start with qualitative games, i.e., we will look
at games with various Boolean winning conditions that occur in practice. Then,
we will consider quantitative games, which occur when we consider more subtle
specifications. In Sect. 27.3 we will discuss the classical and some more modern
algorithms for LTL synthesis. In Sect. 27.4, we will conclude with related work that
we cannot discuss in full detail.

27.2 Theory of Graph-Based Games

In this section we present definitions of game graphs, plays, strategies, and objec-
tives. We will define when a game is won and introduce the appropriate decision
problems. We will then discuss the basic techniques and algorithms to solve them.

924 R. Bloem et al.

27.2.1 Game Graphs and Strategies

Game Graphs. A game graph G = 〈(S,E), (S1, S2)〉 consists of a finite set S of
states partitioned into player-1 states S1 and player-2 states S2 (i.e., S = S1 ∪ S2

and S1 ∩ S2 = ∅), and a set E ⊆ S × S of edges such that for all s ∈ S, there exists
(at least one) t ∈ S such that (s, t) ∈ E. In other words, every state has at least
one outgoing edge. A player-1 game is a game graph where S1 = S and S2 = ∅,
and vice versa for player 2. The sub-graph of G induced by U ⊆ S is the graph
〈(U,E ∩ (U × U)), (U ∩ S1,U ∩ S2)〉 (which is not a game graph in general); the
sub-graph induced by U is a game graph if for all s ∈ U there exists a t ∈ U such
that (s, t) ∈ E.

Plays and Strategies. A game on G starting from a state s0 ∈ S is played in rounds
as follows. If the game is in a player-1 state, then player 1 chooses an outgoing
edge to determine the successor state; otherwise the game is in a player-2 state, and
player 2 chooses the successor state. This way, the game results in a play from s0,
i.e., an infinite path ρ = s0s1 · · · ∈ Sω such that (si , si+1) ∈ E for all i ≥ 0. We
denote the set of all plays as Plays(G). The prefix of length n of ρ is denoted by
ρ(n). We often identify ρ with the set of states in ρ, and we use expressions such
as s0 ∈ ρ. A strategy for player 1 is a recipe that prescribes how to extend the pre-
fix of a play. Formally, a strategy σ for player 1 is a function σ : S∗S1 → S such
that (s, σ (w · s)) ∈ E for all w ∈ S∗ and s ∈ S1. An outcome of σ from s0 is a
play s0s1 . . . such that σ(s0 . . . si) = si+1 for all si ∈ S1. Strategy and outcome for
player 2 are defined analogously. We denote by Σ and Π the set of strategies for
player 1 and player 2, respectively. Given strategies σ and π for player 1 and 2,
respectively, and a starting state s0, there is a unique play (or outcome) s0s1 . . . , de-
noted ρ(s0, σ,π), such that for all i ≥ 0, if si ∈ S1, then si+1 = σ(s0s1 . . . si) and if
si ∈ S2, then si+1 = π(s0s1 . . . si).

Finite-Memory and Memoryless Strategies. A strategy uses finite-memory if it
can be encoded by a deterministic transducer 〈M,m0, σu, σn〉 where M is a finite set
(the memory of the strategy), m0 ∈ M is the initial memory value, σu : M ×S → M

is an update function, and σn : M × S1 → S is a next-move function. The size of the
strategy is the number |M| of memory values. If the game is in a player-1 state s,
the strategy chooses t = σn(m, s) as the next state (where m is the current memory
value), and the memory is updated to σu(m, s). Formally, 〈M,m0, σu, σn〉 defines
the strategy σ such that σ(w ·s) = σn(σ̂u(m0,w), s) for all w ∈ S∗ and s ∈ S1, where
σ̂u extends σu to sequences of states in the usual way. A strategy is memoryless if
it is independent of the history of the play and depends only on the current state.
In other words, a memoryless strategy σ has only one memory state, i.e., |M| = 1,
and hence the strategy is specified as σ : S1 → S. For a finite-memory strategy
σ , Gσ is the graph obtained as the product of G with the transducer defining σ ,
where (〈m,s〉, 〈m′, s′〉) is a transition in Gσ if m′ = σu(m, s) and either s ∈ S1 and
s′ = σn(m, s), or s ∈ S2 and (s, s′) ∈ E.

27 Graph Games and Reactive Synthesis 925

27.2.2 Objectives

In this section we will define objectives. An objective for G is a set ϕ ⊆ Sω.

Qualitative Objectives. For an infinite play ρ we denote by Inf(ρ) the set of states
that occur infinitely often in ρ. We consider the following objectives:

• Reachability Objectives. A reachability objective is defined by a set F ⊆ S of
target states, and the objective requires that a state in F is visited at least once.
Formally, ReachG(F) = {ρ ∈ Plays(G) | ∃s ∈ ρ : s ∈ F }. The dual of reacha-
bility objectives are safety objectives, and a safety objective is defined by a set
F ⊆ S of safe states, and the objective requires that only states in F are visited.
Formally, SafeG(F) = {ρ ∈ Plays(G) | ∀s ∈ ρ : s ∈ F }.

• Büchi Objectives. A Büchi objective is defined by a set B ⊆ S of target states,
and the objective requires that a state in B is visited infinitely often. Formally,
BuchiG(B) = {ρ ∈ Plays(G) | Inf(ρ) ∩ B �= ∅}. Büchi objectives represent live-
ness specifications, and the dual of a Büchi objective is called a co-Büchi objec-
tive. A co-Büchi objective consists of a set C ⊆ S of states and requires states out-
side C to be visited finitely often, i.e., coBuchiG(C) = {ρ ∈ Plays(G) | Inf(ρ) ⊆
C}.

• Rabin and Streett Objectives. Rabin and Streett objectives are obtained as
Boolean combinations of Büchi and co-Büchi objectives. A Rabin specification
for the game graph G is a finite set R = {(E1,F1), . . . , (Ed,Fd)} of pairs of sets
of states, that is, Ej ⊆ S and Fj ⊆ S for all 1 ≤ j ≤ d . The pairs in R are called
Rabin pairs. We assume without loss of generality that

⋃
1≤j≤d(Ej ∪ Fj) = S.

The Rabin objective requires that for some 1 ≤ j ≤ d , all states in the left-
hand set Ej are visited finitely often, and some state in the right-hand set Fj

is visited infinitely often. Thus, the Rabin objective defined by R is the set
RabinG(R) = {ρ ∈ Plays(G) | (∃1 ≤ j ≤ d)(Inf(ρ) ∩ Ej = ∅ ∧ Inf(ρ) ∩ Fj �= ∅)}
of winning paths. Note that the co-Büchi objective coBuchiG(C) is equal to
the single-pair Rabin objective RabinG({(S \ C,S)}), and the Büchi objective
BuchiG(B) is equal to the two-pair Rabin objective RabinG({(∅,B), (S,S)}).1
The complements of Rabin objectives are called Streett objectives. A Streett spec-
ification for G is likewise a set Q = {(E1,F1), . . . , (Ed,Fd)} of pairs of sets of
states Ej ⊆ S and Fj ⊆ S such that

⋃
1≤j≤d(Ej ∪ Fj) = S. The pairs in Q are

called Streett pairs. The Streett objective Q requires that for every Streett pair
(Ej ,Fj), 1 ≤ j ≤ d , if some state in the right-hand set Fj is visited infinitely
often, then some state in the left-hand set Ej is visited infinitely often. For-
mally, the Streett objective defined by Q is the set StreettG(Q) = {ρ ∈ Plays(G) |
(∀1 ≤ j ≤ d)(Inf(ρ) ∩ Ej �= ∅ ∨ Inf(ρ) ∩ Fj = ∅)} of winning paths. Note that
StreettG(Q) = Plays(G) \ RabinG(Q).

1Note that no run can satisfy the condition expressed by the second pair, which is however required
by the definition.

926 R. Bloem et al.

• Parity Objectives. Let p : S → N0 be a priority function. The parity objective
ParityG(p) = {ρ ∈ Plays(G) | min{p(s) | s ∈ Inf(ρ)} is even} requires that the
minimum of the priorities of the states visited infinitely often be even. The special
cases of Büchi and co-Büchi objectives correspond to the case with two priorities,
p : S → {0,1} and p : S → {1,2} respectively. (Here, priorities 0 and 2 are for
the accepting states, 1 is for the rejecting states.)

We refer to the above objectives as qualitative objectives since they are defined by
Boolean combinations of sets that are subsets of S.

Relationship Between Rabin, Streett and Parity Objectives. We have already
seen how Büchi and co-Büchi objectives are special cases of Rabin, Streett and
parity objectives. We now present the relationship between Rabin, Streett and par-
ity objectives. Parity objectives are also called Rabin-chain objectives, as they
are a special case of Rabin objectives [169]: if the sets of a Rabin specification
R = {(E1,F1), . . . , (Ed,Fd)} form a chain E1 � F1 � E2 � F2 � · · · � Ed � Fd ,
then RabinG(R) = ParityG(p) for the priority function p: S → {0,1, . . . ,2d} that
for every 1 ≤ j ≤ d assigns to each state in Ej \Fj−1 the priority 2j −1, and to each
state in Fj \ Ej the priority 2j , where F0 = ∅. Conversely, given a priority function
p: S → {0,1, . . . ,2d}, we can construct a chain E1 � F1 � · · · � Ed+1 � Fd+1 of
d + 1 Rabin pairs such that ParityG(p) = RabinG({(E1,F1), . . . , (Ed+1,Fd+1)})
as follows: let E1 = ∅ and F1 = p−1(0), and for all 1 ≤ j ≤ d + 1, let Ej =
Fj−1 ∪ p−1(2j − 3) and Fj = Ej ∪ p−1(2j − 2). Hence, the parity objectives are
a subclass of the Rabin objectives that is closed under complementation. It follows
that every parity objective is both a Rabin objective and a Streett objective. The par-
ity objectives are of special interest, because every ω-regular objective can be turned
into a parity objective by modifying the game graph (take the synchronous product
of the game graph with a deterministic parity automaton that accepts the ω-regular
objective) [133]. Moreover, parity objectives enjoy several attractive computational
properties (see discussion of algorithms for parity games in Sect. 27.2.4).

Quantitative Objectives. We consider three classical quantitative objectives de-
fined with weight functions on the edges of the graph. Let w : E → Z be a weight
function, where positive numbers represent rewards. We denote by W the largest
weight (in absolute value) according to w.

• Energy Objectives. Given a play ρ, the energy level of a prefix γ = s0s1 . . . sn of
the play is EL(γ) = ∑n−1

i=0 w((si, si+1)). Given an initial credit c0 ∈N∪ {∞}, the
energy objective PosEnergyG(c0) = {ρ ∈ Plays(G) | ∀n ≥ 0 : c0 + EL(ρ(n)) ≥ 0}
requires that the energy level is always non-negative.

• Mean-Payoff Objectives. The mean-payoff value of a play ρ = s0s1 . . . is
MP(ρ) = lim infn→∞ 1

n
· EL(ρ(n)). Given a threshold θ ∈ Q, the mean-payoff

objective MeanPayoffG(θ) = {ρ ∈ Plays(G) | MP(ρ) ≥ θ} requires that the mean-
payoff value be at least θ .

• Discounted Objectives. Given a discount factor 0 < λ < 1, the discounted
value of a play ρ = s0s1 . . . is Disc(λ,ρ) = ∑∞

i=0 λi · w((si, si+1)). Given a

27 Graph Games and Reactive Synthesis 927

threshold θ ∈ Q, the discounted objective DiscountedG(λ, θ) = {ρ ∈ Plays(G) |
Disc(λ,ρ) ≥ θ} requires that the discounted value be at least θ .

In the sequel, when the game G is clear from the context, we omit the subscript in
objective names.

27.2.3 Winning and Optimal Strategies; Decision Problems

We now define the notion of winning in games and decision problems.

Winning Strategies and Sets. Given a game graph G, a starting state s0 and an
objective ϕ, a strategy σ is winning for player 1 from s0 for ϕ if for all strategies
π for player 2 we have ρ(s0, σ,π) ∈ ϕ. The set of winning states W1(ϕ) = {s0 |
∃σ ∈ Σ. ∀π ∈ Π. ρ(s0, σ,π) ∈ ϕ} is the set of states s0 such that player 1 has a
winning strategy from s0 for ϕ (note that an objective is a set of plays). The winning
set W2(ϕ) = {s0 | ∃π ∈ Π. ∀σ ∈ Σ. ρ(s0, σ,π) ∈ ϕ} is defined analogously. We
will consider the winning sets and strategies for objectives defined in the previous
subsection, i.e., reachability, safety, Büchi, co-Büchi, parity, Rabin, Streett, energy,
mean-payoff and discounted objectives. For energy objectives, we will also consider
the finite initial credit problem, where the winning region is the set of states s0 such
that there exists a finite initial credit c0 such that s0 ∈ W1(PosEnergyG(c0)).

Decision Problems. The decision problems that we consider consist of an input
game graph G, an objective ϕ and a state s0, and the decision problem asks whether
s0 ∈ W1(ϕ). We will also consider the decision problem for the finite initial credit
problem, which asks whether a given state s0 is in the winning set for the finite
initial credit problem.

27.2.4 Complexity and Algorithms for Graph Games
with Qualitative Objectives

In this section we will discuss the results related to graph games with qualitative
objectives. We will focus on the strategy complexity, computational complexity,
and algorithms. We will mention the basic techniques and relevant pointers to the
literature. We will first discuss symbolic algorithms for game solving.

Symbolic Algorithms. The symbolic algorithms for game solving are obtained by
characterizing the winning set using μ-calculus formulae (cf. Chap. 26 in this Hand-
book [24]). A μ-calculus formula is a succinct description of a nested iterative algo-
rithm that uses only set operations and the predecessor operators (described in the
next paragraph). All the set operations and predecessor computations are symbolic

928 R. Bloem et al.

steps that are available as primitive operations in, e.g., a BDD library (cf. Chap. 7
in this Handbook [29]) such as CuDD [164]. Thus, a μ-calculus formula for the
winning set presents a symbolic algorithm for game solving. We will describe the
μ-calculus formula for reachability and Büchi games. The μ-calculus formulas for
parity games are presented in [86] and they were later generalized to Rabin and
Streett games in [138].

Reachability and Safety Games. We first present the classical algorithm to solve
reachability games. Let us first define the predecessor operator. Given a set X ⊆ S

of states, the predecessor operator Pre1(X) is defined as follows

Pre1(X) = {
s ∈ S1

∣
∣ ∃t ∈ X.(s, t) ∈ E

} ∪ {
s ∈ S2

∣
∣ ∀t ∈ S.(s, t) ∈ E → t ∈ X

}
.

In other words, Pre1(X) is the set of states such that either the state is a player-1
state and there is a next state in X or the state is a player-2 state and all choices lead
to a next state in X. The dual predecessor operator is as follows:

Pre2(X) = {
s ∈ S2

∣
∣ ∃t ∈ X.(s, t) ∈ E

} ∪ {
s ∈ S1

∣
∣ ∀t ∈ S.(s, t) ∈ E → t ∈ X

}
.

The classical algorithm for games with reachability objectives is the fixpoint compu-
tation of the Pre1(·) operator. Given a target set T , let T0 = T , and for i ≥ 0, let Ti+1
be defined inductively as Ti+1 := Ti ∪ Pre1(Ti). Let us consider the fixpoint, which
is also called the attractor of player 1 to T . Let T∗ = Attr1(T) = ⋃

i≥0 Ti . A memo-
ryless strategy for player 1 for T∗ is defined as follows: for a state s ∈ (Ti+1 \Ti)∩S1
choose an edge (s, t) such that t ∈ Ti (such an edge exists by construction). It is
easy to show by induction that for all s ∈ Ti , player 1 can ensure to reach T within
i steps against all player-2 strategies. Hence T∗ ⊆ W1(Reach(T)). Let T ∗ = S \ T∗.
For all s ∈ T ∗ ∩ S1, there are no outgoing edges (s, t) with t ∈ T∗ (otherwise, s

would have been included in T∗); and for all s ∈ T ∗ ∩ S2, there is an outgoing
edge (s, t) with t ∈ T ∗ (otherwise, s would have been included in T∗). A memory-
less strategy for player 2 that for all s ∈ T ∗ ∩ S2 chooses an outgoing edge (s, t)

with t ∈ T ∗ ensures against all player-1 strategies that T ∗ is not left. Thus we have
T ∗ ⊆ W2(Safe(S \T)). A linear-time algorithm to compute W1(Reach(T)) is given
in [13, 106]. We summarize the main results of reachability and safety games in the
following theorem.

Theorem 1 Given a game graph G with n vertices and m edges and a target set T ,
the following assertions hold:

1. W1(Reach(T)) = S \ W2(Safe(S \ T)) and memoryless winning strategies exist
for both players.

2. The winning set W1(Reach(T)) can be computed in O(m) (linear) time.
3. The winning set W1(Reach(T)) can be computed symbolically with the μ-

calculus formula μX.[T ∪ Pre1(X)].

Büchi and co-Büchi Games. The algorithm for Büchi games is obtained by repeat-
edly applying the attractor computation (reachability game solutions). Informally,

27 Graph Games and Reactive Synthesis 929

Fig. 1 Büchi game of Example 1

the algorithm is as follows: let B be the set of Büchi states. We first compute the set
A1 = W1(Reach(B)) = Attr1(B) such that player 1 has a strategy to reach B at least
once. In the complement set of A1, player 1 cannot even reach B once and hence is
clearly not winning. The complement set A1 and the player-2 attractor Attr2(A1) are
removed from the graph. The process is iterated unless the set A1 is empty. If A1
is empty, then from all states in A1 player 1 can ensure to reach B and stay in A1
and hence ensure that the set B is visited infinitely often. We now formally describe
an iteration j of the algorithm: the set of states at iteration j is denoted by Sj , the
game graph by Gj , and the set of Büchi states B ∩Sj by Bj . Given a game graph G

and a set U of states, we denote by G � U the game graph induced by U . We have
that Gj is the game graph induced by Sj . At iteration j , the algorithm first finds
the set of states A

j

1 from which player 1 can ensure that the play reaches the set Bj ,

i.e., computes Attr1(B
j) in Gj . The rest of the states A

j

1 = Sj \ A
j

1 are winning for

player 2. Then the set of states Wj+1, from which player 2 can ensure reaching A
j

1

i.e., Attr2(A
j

1) in Gj , is computed. The set Wj+1 is winning for player 2, and not
for player 1 in Gj and also in G. Thus, it is removed from the vertex set to obtain
game graph Gj+1. The algorithm then iterates on the reduced game graph, i.e., pro-
ceeds to iteration j + 1 on Gj+1. The correctness proof of the algorithm shows that
when the algorithm terminates, all the remaining states are winning for player 1. The
pseudocode of the algorithm is described in Algorithm 1. For improved algorithms
for Büchi games see [52, 53, 61, 64].

Example 1 We illustrate the algorithm for Büchi games on the example game graph
shown in Fig. 1. The player-1 states are depicted as circles and player-2 states as

boxes; and Büchi states are indicated as double circles. The set A
0
1 is the set {s0, s1}

and its player-2 attractor is {s0, s1, s2}. In the following iteration the set A
1
1 is the

set {s3, s4} and its player-2 attractor is also the set {s3, s4}. In the next iteration

the set A
2
1 is empty, and thus the algorithm returns ({s5, s6, s7}, {s0, s1, s2, s3, s4}).

The winning strategy for player 1 in the set {s5, s6, s7} (indicated by bold arrows
in Fig. 1) is as follows: in state s5 choose the successor s6 and in s6 choose the
successor s5.

Characterization of Winning Set by μ-calculus Formula. The μ-calculus for-
mula to characterize the winning set for Büchi objectives is as follows:

νY.μX.
[(

B ∩ Pre1(Y)
) ∪ (

(S \ B) ∩ Pre1(X)
)]

.

930 R. Bloem et al.

Algorithm 1: Classical algorithm for Büchi Games

Input : A game graph G = 〈(S,E), (S1, S2)〉 and B ⊆ S.
Output: (S \ W,W): the winning set partition.
1. G0 := G; S0 := S; 2. W0 := ∅; 3. j := 0
4. repeat

4.1 Wj+1 := AvoidSetClassical(Gj ,B ∩ Sj)

4.2 Sj+1 := Sj \ Wj+1; Gj+1 = G � Sj+1; j := j + 1;
until Wj = ∅

5. W := ⋃j

k=1 Wk ;
6. return (S \ W,W).

Procedure AvoidSetClassical
Input: Game graph Gj and Bj ⊆ Sj .
Output: set Wj+1 ⊆ Sj .

1. A
j

1 := Attr1(B
j) in Gj ; 2. A

j

1 := Sj \ A
j

1; 3. Wj+1 := Attr2(A
j

1) in Gj ;

The argument that the above formula gives the winning set for Büchi objectives is
as follows: let Y∗ = νY.μX.[(B ∩ Pre1(Y)) ∪ ((S \ B) ∩ Pre1(X))]. Since Y∗ is a
fixpoint, if we replace Y by Y∗ we would obtain the same result, i.e.,

Y∗ = μX.
[(

B ∩ Pre1(Y∗)
) ∪ (

(S \ B) ∩ Pre1(X)
)]

.

Let T = B ∩ Y∗; and all states in B ∩ Y∗ satisfy Pre1(Y∗), i.e., in states of B ∩ Y∗
player 1 can ensure that the next state is in Y∗. Treating the set T = B ∩ Y∗ =
B ∩ Pre1(Y∗) as the target set for reachability objectives, it follows that for all states
in Y∗ player 1 can ensure to reach T . Hence player 1 can ensure to reach T from all
states in Y∗ and Y∗ is never left, and thus T is visited infinitely often. Since T ⊆ B ,
it follows that the Büchi objective is satisfied. A similar argument shows that in
the complement of the μ-calculus formula, player 2 can ensure the complement
co-Büchi objective (we also refer the reader to Chap. 26 in this Handbook [24]
for an excellent exposition on μ-calculus). The main results for Büchi games are
summarized as follows.

Theorem 2 Given a game graph G, with set B of Büchi states, the following asser-
tions hold:

1. W1(Buchi(B)) = S \ W2(coBuchi(S \ B)) and memoryless winning strategies
exist for both players.

2. The winning set W1(Buchi(B)) can be computed in O(n · m) (quadratic) time.
3. The winning set W1(Buchi(B)) can be computed symbolically with the μ-

calculus formula νY.μX.[(B ∩ Pre1(Y)) ∪ ((S \ B) ∩ Pre1(X))].

Parity Games. Emerson and Jutla [86] established the equivalence of solving 2-
player parity games and μ-calculus model checking (see Chap. 26 in this Hand-

27 Graph Games and Reactive Synthesis 931

book [24]). This intriguing connection led to much research attempting to solve
2-player parity games in polynomial time. Alas, the problem is still open. The classi-
cal algorithm for solving parity games proceeds by a recursive decomposition of the
problem and repeatedly solving games with reachability objectives [128, 169]. The
algorithm generalizes the algorithm presented for Büchi games, and the correctness
proof establishes the existence of memoryless winning strategies for both players.
The running time of the algorithm for games with n states, m edges, and d priorities
is O(nd−1 · m). Jurdziński [111] gave an improved algorithm to solve parity games
based on a notion of ranking functions and progress measures. This algorithm, called

the small progress measure algorithm, has a running time of O((2n
d

)� d
2 � · m); more-

over, there exists a family of games on which the running time of the algorithm
is exponential. Another notable algorithm for solving parity games is the strategy
improvement algorithm [175]. This algorithm iterates local optimizations of mem-
oryless strategies which converge to a globally optimal strategy. Also see [154] for
another strategy improvement scheme. Based on the strategy improvement algo-
rithm, a randomized subexponential-time algorithm (with an expected running time
of O(2

√
n·logn)) for solving parity games was presented by Björklund et al. [15].

Friedmann [97] showed that there exists a family of games on which the running
time of the strategy-improvement algorithms is exponential, and for a more elabo-
rate description of lower bounds for strategy-improvement schemes see [98]. Jur-
dziński et al. [112] gave a deterministic subexponential-time algorithm for solving
2-player games with parity objectives. By combining the small progress measure
algorithm [111] and the deterministic subexponential-time algorithm [112], an im-

proved algorithm was presented in [153] with roughly O((3n
d

)� d
3 � ·m) running time.

We summarize the results in the following theorem.

Theorem 3 Given a game graph G, with a priority function p with d priorities,
the following assertions hold:

1. W1(Parity(p)) = S \ W2(Plays(G) \ Parity(p)) and memoryless winning strate-
gies exist for both players.

2. Given a state s, whether s ∈ W1(Parity(p)) can be decided in NP ∩ coNP.

3. The winning set W1(Parity(p)) can be computed in O((3n
d

)� d
3 � · m), and also in

nO(
√

n) time.
4. The winning set W1(Parity(p)) can be computed symbolically with a μ-calculus

formula of alternation depth d − 1.

Rabin and Streett Games. Gurevich and Harrington [101] showed that for 2-player
games with ω-regular objectives, finite-memory strategies suffice for winning. The
construction of finite-memory winning strategies is based on a data structure, called
a latest appearance record (LAR), which remembers the order of the latest appear-
ances of the states in a play. Emerson and Jutla [85] established that for 2-player
games with Rabin objectives, memoryless strategies suffice for winning. The results
of Dziembowski et al. [80] give precise memory requirements for strategies in 2-
player games with ω-regular objectives: their construction of strategies is based on

932 R. Bloem et al.

a tree representation of a Muller objective, called the Zielonka tree, which was in-
troduced in [180] (for details of Muller objectives see [169, 180]). It follows from
these results that for Streett objectives with d-pairs, d! memory is both necessary
and sufficient. Emerson and Jutla [85] showed that the solution problem for Rabin
objectives is NP-complete, and dually, coNP-complete for Streett objectives. The
notable algorithms for games with Rabin and Streett objectives include the adap-
tation of the classical algorithm of Zielonka [180] for Muller games specialized to
Rabin and Streett games (see [105] for an exposition); an algorithm that is based on
a reduction to the emptiness problem for weak alternating automata [119]; a gen-
eralization of the small progress measure algorithm for parity games to Rabin and
Streett games [138]; and a generalization of the subexponential-time algorithm for
parity games [112] to Rabin and Streett games [62]. Symbolic algorithms for Rabin
and Streett games are presented in [138].

Theorem 4 Given a game graph G, with a set P = {(E1,F1), . . . , (Ed,Fd)} of d

pairs of sets of states, the following assertions hold:

1. We have W1(Rabin(P)) = S \ W2(Plays(G) \ Rabin(P)), and W1(Streett(P)) =
S \ W2(Plays(G) \ Streett(P)). Memoryless winning strategies exist for Rabin
objectives, and for Streett objectives d! memory is necessary and sufficient.

2. Given a state s, the decision problem whether s ∈ W1(Rabin(P)) is NP-complete,
and the decision problem whether s ∈ W1(Streett(P)) is coNP-complete.

3. The winning sets W1(Rabin(P)) and W1(Streett(P)) can be computed in O(d! ·
nd · m) time.

Boolean Combinations. We now discuss some Boolean combinations of the above
objectives that have been used in synthesis. The class of GR(1) (Generalized Re-
activity(1)) conditions was introduced in [140]. A GR(1) objective is specified as
an implication between a conjunction of k1 Büchi objectives (the assumptions)
and a conjunction of k2 Büchi objectives (the guarantees). A large class of objec-
tives in synthesis can be specified as GR(1) specifications [140], and games with
GR(1) conditions can be solved in time O(n2 · m · k1 · k2) [140] and also in time
O(n ·m · (k1 · k2)

2) [18]. Games with generalized parity objectives (conjunction and
disjunction of parity objectives) have been studied in [62].

27.2.5 Complexity and Algorithms for Graph Games
with Quantitative Objectives

In this section we will discuss the results related to solving graph games with quan-
titative objectives. Again we will focus on the strategy complexity, computational
complexity, and algorithms. We will mention the basic techniques, and the relevant
pointers to literature.

27 Graph Games and Reactive Synthesis 933

Mean-Payoff and Energy Games. The existence of memoryless winning strategies
in mean-payoff games was established in [83], and the proof was based on induction
on the number of edges and establishing the equivalence of the mean-payoff game
played for finitely many steps and the mean-payoff game played forever. The algo-
rithmic solution for mean-payoff games was given in [181], using a value iteration
algorithm. Consider a sequence of valuations (vi)i≥0, where each valuation vi is a
function vi : S → Z defined as follows: (1) v0(s) = 0 for all s ∈ S; and (2) for i ≥ 0
we have

vi+1(s) =
{

max(s,t)∈E{w(s, t) + vi(t)} for s ∈ S1

min(s,t)∈E{w(s, t) + vi(t)} for s ∈ S2.

Observe that vk can be computed in time O(k ·m), where m is the number of edges.
Let v∗ be the optimal valuation of the mean-payoff game. The results of [181] show
that

vk

k
− 2 · n · W

k
≤ v∗ ≤ vk

k
+ 2 · n · W

k
,

where W is the maximum absolute value of the weights. Furthermore, it was shown
in [181] that by computing vk for k = 4 · n3 · W , the optimal value vector v∗ can be
computed. The result for energy games is similar: existence of memoryless winning
strategies was established in [33], and a value iteration algorithm was also given.
The running time of the value iteration algorithm is O(n3 · m · W). Recently, the
value iteration algorithm has been improved by [28] to obtain an algorithm that runs
in O(n2 · m · W) time. A strategy improvement algorithm for mean-payoff games
is presented in [16]. We summarize the result in the following theorem (we present
the result for mean-payoff objectives, but the result for energy objectives is similar).

Theorem 5 Given a game graph G, with a weight function w,

1. For all θ ∈N, we have W1(MeanPayoff(θ)) = S \W2(Plays(G)\MeanPayoff(θ))

and memoryless winning strategies exist for both players.
2. Given a state s and θ ∈ N, whether s ∈ W1(MeanPayoff(θ)) belongs to NP ∩

coNP.
3. For θ ∈ N, the winning set W1(MeanPayoff(θ)) can be computed in O(n2 ·m ·W)

time.

Discounted Games. The existence of memoryless strategies in discounted games
can be obtained as a special case of the result of Shapley [159]. The algorithm to
solve discounted games is similar to the value iteration for mean-payoff games,
and in discounted games the valuations need to be computed for O(n3 · 1

1−λ
) steps

(see [92, 181] for details). The results for discounted games are as follows.

Theorem 6 Given a game graph G, with a weight function w,

1. For all θ ∈ N and rational 0 < λ < 1, we have W1(Discounted(λ, θ)) = S \
W2(Plays(G) \ Discounted(λ, θ)) and memoryless winning strategies exist for
both players.

934 R. Bloem et al.

2. Given a state s, rational 0 < λ < 1, and θ ∈ N, whether s ∈ W1(Discounted(λ, θ))

can be decided in NP ∩ coNP.
3. For θ ∈ N and rational 0 < λ < 1, the winning set W1(Discounted(λ, θ)) can be

computed in O(n3 · m · 1
1−λ

) time.

27.2.6 Reducibility Between Graph Games

We now discuss the reducibility between various classes of games.

Parity to Mean-Payoff Games. A reduction of parity games to mean-payoff
games was presented in [110]. The reduction is defined on the same game graph,
and the reduction function is as follows: for a state with priority i, the reward
is (−1)i · ni , where n is the number of states. Then we have W1(Parity(p)) =
W1(MeanPayoff(0)), i.e., the winning sets for parity and mean-payoff objectives
coincide. The question of whether the decision problem for mean-payoff objectives
can be reduced to parity objectives is open.

Mean-Payoff to Discounted Games. The reduction of mean-payoff games to dis-
counted games was presented in [181]. The reduction was defined on the same
game graph, with the same reward function, and the discount factor of λ defined
as 1 − 1

4·n3·W , where n is the number of states and W is the maximum absolute
value of the weights. The question of whether the decision problem for discounted
objectives can be reduced to mean-payoff objectives is open.

Energy Games and Mean-Payoff Games. The equivalence of the decision problem
for finite initial credit for energy objectives and the mean-payoff objectives was
established in [22]. The main argument is as follows: by the existence of memoryless
strategies it follows that if the answer to the mean-payoff objectives with threshold
θ = 0 is true, then player 1 can fix a memoryless strategy such that in all cycles
the sum of the rewards is non-negative, and this exactly coincides with the finite
initial credit problem (where after a prefix, the sum of the rewards in cycles is non-
negative). A similar argument holds for the reduction in the other direction.

27.2.7 Extensions

We briefly discuss several extensions of such games which have been studied in the
literature, and give a few relevant references (there is no attempt to be exhaustive).

Stochastic and Concurrent Games. In this chapter we focused on games where the
transitions are deterministic, and the games were turn-based (in each round one of
the players makes a move). The class of turn-based stochastic games (games with

27 Graph Games and Reactive Synthesis 935

a probabilistic transition function) has been widely studied, for example in [34–
36, 65, 77, 78]. The class of concurrent games where both players make their move
simultaneously has also been studied in depth [5, 7, 37–39, 67, 91, 102, 127, 159].
For a survey of stochastic and concurrent games see [56].

Partial-Information Games. In partial-information games, the players choose
their moves based on incomplete information about the state of the game. Such
games are harder to solve than the corresponding perfect-information games. For
example, turn-based deterministic (2-player) games with partial information and
zero-sum reachability/safety objectives are EXPTIME-complete [149]. In the pres-
ence of more than two players, turn-based deterministic games with partial informa-
tion and reachability objectives (for one of the players) are even undecidable [149].
A key technique to solve partial-information games (when possible) is reduction to
perfect-information games, using a subset construction on the state space similar to
the determinization of finite automata. The results in [54] present a close connection
between a subclass of partial-information turn-based games and perfect-information
concurrent games. The algorithmic analysis of partial-information stochastic games
with ω-regular objectives has been studied in [44, 48, 49, 135]; the complexity of
partial-information Markov decision processes has been studied in [40, 46, 136].
The more general class of partial-information stochastic games where both players
have partial information has been studied in [14, 43]. Another interesting variety
of partial-information games is the class of games where the starting state is un-
known [103]. See [41, 47] for surveys related to partial-observation games.

Infinite-State Games. There are several extensions of games played on finite state
spaces to games played on infinite state spaces. Notable examples are pushdown
games and timed games. In the case of pushdown games, the state of a game en-
codes an unbounded amount of information in the form of the contents of a stack.
Deterministic pushdown games are solved in [176] (see [178] for a survey); prob-
abilistic pushdown games in [89, 90]; and pushdown games with quantitative ob-
jectives in [51, 68, 72]. In the case of timed games, the state of a game encodes an
unbounded amount of information in the form of real-numbered values for finitely
many clocks. Timed games are studied in [2, 123].

Quantitative and Qualitative Objectives. The problem of solving turn-based
games with a conjunction of quantitative and qualitative objectives has been studied
in [42, 60]; and multi-dimensional quantitative objectives in [27, 45, 71, 73, 174].
The problem of multi-dimensional objectives has also been widely studied for
stochastic models [25, 26, 50, 66, 74, 87, 96].

Logical Framework for Games. Logical frameworks where properties for games
can be described concisely with precise semantics for reasoning about games have
also been studied in the literature. Some prominent examples of logical frameworks
for reasoning about games are alternating-time temporal logic (ATL) and game
logic [9]; strategy logic and various fragments [63, 130, 131]; and coordination
logic [95].

936 R. Bloem et al.

27.3 Reactive Synthesis

27.3.1 Introduction

In this section, we summarize techniques to automatically construct reactive systems
from specifications. A reactive system [124, 125] is a system that maintains an on-
going interaction with its environment. Examples of reactive systems are concurrent
programs, air traffic control systems, controllers for mechanical devices, and digital
hardware designs. We will use LTL as our representative specification language for
concurrent systems (see Chap. 2 in this Handbook [139]). Many interesting proper-
ties such as mutual exclusion, deadlock freedom, fairness, and termination can be
expressed in LTL.

We will limit ourselves to synchronous systems. This limitation implies that we
consider games in which the players strictly alternate turns. The theory needed for
asynchronous systems is somewhat different [115, 143, 145, 155, 170], as for such
systems the interleaving of processes is not under the control of (or even known to)
the system. Thus, it is not possible, for instance, to guarantee that the value of an
output changes before a given input changes [1, 5]. (See also [79], where realizabil-
ity is used to define the concept of “receptiveness” for asynchronous systems.)

The classical approach to synthesis (presented in Sect. 27.3.4) reduces the LTL
synthesis problem to the problem of synthesizing a system that realizes a language
defined by a Büchi automaton. Thus, this approach can be seen as a solution to
the more general problem of deriving a system from a specification given as an
ω-regular language.

Every synthesis problem consists of two inputs: (1) a specification that defines
the desired behavior of the system and (2) a partition of variables used in the specifi-
cation into input and output variables. Let us fix a set I of Boolean input signals and
a set O of Boolean output signals. Thus, the input and output alphabet are ΣI = 2I

and ΣO = 2O , respectively, where a letter is a subset of ΣI ∪ ΣO that consists of
those signals that are true (cf. Chap. 2 in this Handbook [139]). In LTL synthesis
the specification is an LTL formula over a set of atomic propositions I ∪ O .

The synthesis problem can be described as a turn-based game between two play-
ers: the environment and the system. In each round, the system picks an output from
ΣO and then the environment picks an input from ΣI , and the next round starts.
(This order corresponds to a Moore machine, we will consider Mealy machines be-
low.)

Example 2 Figure 2(a) gives a safety automaton for the specification �(r →
g ∨ ©g)—every request r must be followed by a grant g in the current or in the
next step. States are represented by circles and transitions by arrows. Each transi-
tion is labeled with one or more conjuncts of atomic propositions or their negations
(denoted by a bar), which indicate that a transition can only be taken with a letter
that satisfies one of these conjuncts. A word is accepted by this safety automaton if
its run stays within the accepting states (denoted by a double circle).

27 Graph Games and Reactive Synthesis 937

Fig. 2 A safety automaton, a labeled safety game, and a system that wins the game

Fig. 3 A nondeterministic safety automaton, and a safety game that does NOT correspond to it

Figure 2(b) shows the safety game corresponding to this specification. The game
is between the system (player 1, owner of the states depicted as circles), which con-
trols output g, and the environment (player 2, owner of the boxes), which controls
input r. The game is created by splitting every transition of the automaton into two
parts: (i) one part controlled by the system and (ii) one part controlled by the en-
vironment. For instance, the self-loop on state q0 with the label r̄ḡ in Fig. 2(a) is
split into (i) the transition from state q0 to q0ḡ in Fig. 2(b), which indicates that the
system has chosen to set g to 0, and the transition from q0ḡ back to q0, which indi-
cates that the environment chooses to set r to 0. The winning condition for player 1
mirrors the acceptance condition of the automaton: stay within the accepting states.

Any player-1 strategy that follows the specification is winning for this game.
The bold arrows in Fig. 2(b) indicate one such winning strategy. Since strategies on
safety games are memoryless (see Theorem 1), a correct system can be implemented
by keeping track of the state of the game and always playing the proper response,
as shown in Fig. 2(c).

938 R. Bloem et al.

For the acceptance conditions that we consider, this simple transformation works
as long as the specification is given by a deterministic automaton. For nondetermin-
istic automata it does not work: the nondeterministic automaton in Fig. 3 accepts
any word, but the game in the same figure on the right is lost for player 1. (The bold
arrays indicate a winning strategy for player 2, which shows that player 1 cannot
win this game from the initial state.) The need for determinization has a significant
impact on complexity, as we will see later.

In order to define the LTL synthesis problem formally, we first give a formal
definition of transducers, which describe the desired systems. We refer the reader to
Chap. 2 in this Handbook [139] for a detailed description of LTL.

27.3.2 Games, Transducers, Trees, and Automata

In the following, we define labeled games as deterministic tree automata. The two
formalisms are equivalent. We will need universal tree automata as an intermediate
step between a logical specification and the resulting transducer. The relation be-
tween (nondeterministic) tree automata and games without labels is formalized in
[101].

Note that the complete behavior of a transducer is a tree, where nodes are labeled
with outputs and edges with inputs: the output of the transducer after input word
w is the label of the node at the end of the path labeled w. Thus, a tree automaton
defines a set of transducers. In the following, we will formalize this notion.

Definition 1 (Tree, Labeled Tree) Given a finite alphabet D of directions, a D-tree
T ⊆ D∗ is a prefix-closed set of words over D. The nodes v · d for d ∈ D are the
children of v; v is their parent. The empty word ε is called the root of T .

A path ρ of T is a prefix-closed subset of T such that (1) the root is in ρ (i.e.,
ε ∈ ρ), and (2) every node has at most one child (i.e., ∀v ∈ T ∀d1, d2 ∈ D, if d1 �= d2
and v · d1 ∈ ρ, then v · d2 /∈ ρ). A tree T is complete if T = D∗.

A Σ -labeled D-tree is a pair (T , τ), where T is a tree and τ : T → Σ is a labeling
function mapping every node in T to a letter from a finite alphabet Σ .

Definition 2 (Transducer) A (finite-state Moore) transducer is a tuple M =
〈I ,O,M,m0, α,λ〉, where M is a (finite) set of states, m0 ∈ M is the initial state,
α : M × ΣI → M is a transition function mapping a state and an input to a suc-
cessor state, and λ : M → ΣO is a labeling function that maps every state to an
output.

We extend α from input letters to input words in the usual way, i.e., α(m,ε) =
m and α(m,v0 . . . vn) = α(α(m,v0 . . . vn−1), vn). An execution of M on input
x0, x1, · · · ∈ ΣI is a word m0,m1, . . . , where mi = α(mi−1, xi−1) for all i > 0.
The associated I/O word is λ(m0) ∪ x0, λ(m1) ∪ x1, . . . , and L (M) is the set of all
I/O words of M .

27 Graph Games and Reactive Synthesis 939

Every transducer M = 〈I ,O,M,m0, α,λ〉 generates a complete ΣO -labeled
ΣI -tree (T , τ) with τ(ε) = λ(m0) and τ(v0 . . . vn) = λ(α(m0, v0 . . . vn−1)). We
denote by LT (M) the singleton set that contains this tree. A complete labeled tree
(T , τ) is called regular if there exists a finite-state transducer that generates (T , τ).

Definition 3 (Deterministic Tree Automaton) A deterministic tree automaton (on
infinite labeled trees) is a tuple A = 〈D,Σ,Q,q0, δ,φ〉, where D and Σ are a
finite set of directions and letters, respectively, Q is a finite set of states, q0 ∈ Q

is the initial state, δ : Q × Σ → D → Q is the transition function, and φ is an
acceptance condition that specifies a subset of Qω .

Given a ΣO -labeled ΣI -tree (T , τ), a run of a deterministic tree automaton A
on (T , τ) is an isomorphic Q-labeled tree (T , τr) in which (1) τr (ε) = q0 and (2) if
τr(v) = q and τ(v) = σ , then τr(v · d) = δ(q, σ, d). (The acceptance conditions
correspond to the winning objectives defined in Sect. 27.2.2. We will discuss them
more below.)

Example 3 The labeled game in Fig. 2(b) is formally defined by a determinis-
tic tree automaton with D = {∅, {r}}, Σ = {∅, {g}}, Q = {q0, q1, q2}, δ(q0,∅) =
{(∅, q0), ({r}, q1)},2 δ(q0, {g}) = {(∅, q0), ({r}, q0)}, δ(q1,∅) = · · · , and φ =
{q0, q1}ω. The player-1 states (circles) correspond to states of the automaton; the
player-2 states (boxes) can be seen as the different transitions of the automaton, i.e.,
pairs of states and letters. Note that the automaton is deterministic, because in every
state for every pair of letters and directions, there exists exactly one successor state.

As an intermediate step in some synthesis procedures, we will use universal tree
automata. They differ from deterministic tree automata by being able to send multi-
ple copies of the automaton, in different states, to a child of a tree node.

Definition 4 (Universal Tree Automaton) A universal tree automaton is a tuple
A = 〈D,Σ,Q,q0, δ,φ〉, where δ : Q × Σ → 2D×Q is the transition function, and
everything else is defined as for deterministic tree automata.

Deterministic tree automata are a special case of universal tree automata. Runs
of universal automata, however, are more complicated: they are not isomorphic to
the input tree. Thus, we label each node of the run tree with the node of the input
tree to which it pertains.

Note that the relation between universal and deterministic automata is more com-
plicated for infinitary acceptance conditions than in the finitary case, even for word
automata. By symmetry, the same holds for the relation between nondeterministic
and deterministic automata. For instance, not every Nondeterministic Büchi Word

2We use a set of tuples D × Q to represent a function D → Q.

940 R. Bloem et al.

automaton has an equivalent Deterministic Büchi Word automaton [167] (and sym-
metrically, a Universal co-Büchi automaton cannot always be translated to Deter-
ministic co-Büchi Word automaton). In other cases, the construction may be possi-
ble but very complicated, as with the determinization of parity automata [137, 151],
or it may be close to the well-known subset construction (as for the translation of
Universal Büchi automata to Deterministic Büchi automata) [129]. As we will see
later, the complexity of the determinization procedure for parity automata is an im-
portant reason that the standard approach to synthesis is quite expensive.

Given a ΣO -labeled ΣI -tree (T , τ), a run of a universal tree automaton A on
(T , τ) is a T × Q-labeled tree (Tr , τr) in which (1) τr (ε) = (ε, q0) and (2) for any
v ∈ Tr , if τr(v) = (n, q), τ(n) = σ , and δ(q, σ) = {(d1, q1), . . . , (dn, qn)}, then v

has children v1, . . . , vn labeled (n · d1, q1), . . . , (n · dn, qn). Note that branches of
the run tree can be finite if δ(q, σ) = ∅.

Acceptance Condition. A run (Tr , τr) is accepting if all its infinite paths ρ satisfy
the acceptance condition. The acceptance condition φ on paths is defined in the
same way as winning objectives on plays (see Sect. 27.2.2). For example, a Büchi
condition is given by a set B ⊆ Q of target states and we define φ to be all the paths
on which we see infinitely often a state from B , i.e., φ = {q0q1 · · · ∈ Qω | ∀i ≥
0∃j > i, qj ∈ B}. The language LT (A) of A is the set of all trees t such that the
run of A on t is accepting. Note that finite paths can never be a reason for rejection.

If |D| = 1, then A is called a word automaton. In this chapter, we are not inter-
ested in nondeterministic and alternating tree automata [86, 134]. Automata types
are typically denoted by three letter acronyms, where the first letter denotes the
branching (A for alternating, U for universal, N for nondeterministic, or D for deter-
ministic), the second letter describes the acceptance condition (B for Büchi, C for
co-Büchi, or P for parity), and the third letter is T for tree automata or W for word
automata.

Example 4 We will ignore Fig. 4 for now. Figure 5 shows a universal co-Büchi
tree automaton (UCT) with letters Σ = 2{g1,g2} (two grant signals) and directions
D = 2{r1,r2} (two request signals). Recall that a UCT accepts a tree if none of its
paths visits a co-Büchi state infinitely often (cf. Sect. 27.2.2). We show part of
an input tree and the corresponding run in Fig. 6. Consider the infinite path indi-
cated with dashed bold lines Fig. 6. The sequence of directions along this path is
{r1r2},∅,∅, {r1r2},∅,∅, . . . , which captures the behavior in which the environment
sends two requests in every third step.

This path of the input tree is labeled with the following output letter sequence
{g1},∅, {g2}, {g1},∅, {g2}; the sequence states that the system responds to this input
behavior by the following three-step pattern: first it sets g1 to high, then it lowers
both grants, and finally it sets g2 to high.

On the right of Fig. 6 we depict the corresponding part of the run of the UCT
on the input tree. Initially, the automaton is in state q0 and it reads the label of the
root of the tree (i.e., {g1}), which enables transition t1. From t1 we have to move
according to the direction that we consider. In our example this direction is {r1r2},

27 Graph Games and Reactive Synthesis 941

Fig. 4 NBW for ¬ϕ

Fig. 5 UCT for ϕ

which enables the edge from t1 to q0 and the edge from t1 to q1. Since the automaton
has universal branching mode, we have to follow both edges and the run continues
in both states. From state q0 with label ∅ (input tree node: 3), the automaton has to
select transition t0 and the direction ∅ leads again to q0. From state q1 the label ∅

942 R. Bloem et al.

Fig. 6 (Left) Part of an input tree. (Right) UCT-run on the dashed path of the input tree

enables transition t6, which brings us back to q1. When the automaton is in state q1
and it reaches node 30 labeled {g2} no transition is enabled, therefore this path of
the run ends here. Recall that a run is accepting if none of the paths visits a co-
Büchi state (indicated by a double circle) infinitely often, and a finite path is always
accepting. In Fig. 6, we show only the first part of the input tree and part of the
corresponding run. The depicted part of the run will repeat as the input repeats.

27.3.3 Realizability and Synthesis Problem

Given an LTL formula ϕ over I ∪ O , and a transducer M = 〈I ,O,M,m0, α,λ〉,
we say that M realizes (or implements) ϕ if L (M) ⊆ L (ϕ).

Definition 5 (LTL Realizability and Synthesis Problem) Given an LTL formula ϕ

over the atomic propositions I ∪O , the realizability problem asks whether there ex-
ists a transducer M that realizes ϕ. If the answer to the realizability problem is yes,
then we call the specification ϕ realizable. The synthesis problem is to construct M .

Let us make two simple observations: First, constructing a Mealy machine is
equally easy (or hard) as constructing a Moore machine. It can be achieved by shift-
ing inputs by one time step. Taking LTL as an example, φ is Mealy-realizable iff
φ′ is Moore-realizable, where φ′ is obtained from φ by replacing every occurrence
of an output signal y by ©y. Equivalently, one can switch the order of the play-
ers in the corresponding game. Second, when negation is possible and the game is

27 Graph Games and Reactive Synthesis 943

determined (as with LTL), then φ is Mealy-realizable with inputs I and outputs
O iff ¬φ is Moore-realizable with inputs O and outputs I . In other words, there
is a system that fulfills the specification iff there is no environment that guarantees
violation (and vice versa).

27.3.4 Classical Approach to LTL Synthesis

In this section we summarize the classical approach to LTL synthesis [30, 142, 146].
The approach consists of the following steps:

1. Translate the LTL formula ϕ into a nondeterministic Büchi word automaton A.
2. Translate A into a deterministic parity word automaton (DPW) B.
3. Construct a deterministic parity tree automaton (DPT) AT from B.
4. Check language emptiness of AT (i.e., solve the parity game).
5. If AT is non-empty, construct a finite-state transducer M , otherwise report that

ϕ is not realizable.

Example 5 (Arbiter Example) We use a specification for a simple arbiter to show
the approach. The arbiter controls the access of two clients, C1 and C2, to a shared
resource. It has two input variables r1 and r2 and two output variables g1 and g2.
Client i can request the resource by setting the input variable ri to true. The arbiter
grants the resource to Client i by setting the corresponding output variable gi to
true.

We require the arbiter to ensure (i) mutually exclusive and (ii) fair access to the
resource. Formally, the specification ϕA = ψ ∧ ϕ1 ∧ ϕ2 is the conjunction of the
following three properties:

ψ = �(¬g1 ∨ ¬g2) mutually exclusive access of the clients,
ϕ1 = �(r1 → ♦g1) fair access for Client 1, and
ϕ2 = �(r2 → ♦g2) fair access for Client 2.

Step 1: LTL to NBW

Given an LTL formula ϕ, we first construct a nondeterministic Büchi word automa-
ton Aϕ such that Aϕ accepts all the words that satisfy ϕ, i.e., L (ϕ) = L (Aϕ) with
|Aϕ | = 2O(|ϕ|) [171]. (Several people have worked on improving this translation,
e.g., [88, 99, 157, 158, 165].)

Step 2: NBW to DPW

Using Piterman’s determinization construction [137] (an improved version of
Safra’s construction [151]), we translate A into a deterministic Parity word au-
tomaton B such that L (A) = L (B). This automaton has 22O(|ϕ|)

states and 2O(|ϕ|)
priorities.

944 R. Bloem et al.

Fig. 7 Deterministic Streett word automaton for ϕA with the Streett pairs R = {(Q, {q0, q1}),
(Q, {q0, q2})}

Example 6 (Arbiter Example (Cont.)) For simplicity, we show in Fig. 7 a determin-
istic Streett (instead of parity) word automaton for the specification ϕA. The winning
condition is that sets {q0, q1} and {q0, q2} (marked with double circles and filled cir-
cles, respectively) must be visited infinitely often (a generalized Büchi condition).
Formally, the automaton AS has two Streett pairs (Q, {q0, q1}) and (Q, {q0, q2}).
The intuitive meaning of the four states q0, q1, q2 and q3 is as follows: there are no
outstanding requests in state q0. There is an outstanding request from Client 1 (or
Client 2) in state q1 (or q2, respectively). In state q3 both requests are outstanding.

Step 3: DPW to DPT

It is easy to convert the DPW B obtained in Step 2 to a DPT A T
ϕ such that A T

ϕ

accepts a tree iff all its paths satisfy ϕ. Intuitively, we split the transitions into two
parts: the first part refers to the output variables (the alphabet of the tree automaton),
the second part to the input variables (the directions of the tree automaton).

Example 7 (Arbiter Example (Cont.)) Figure 8 shows the tree automaton generated
from the automaton in Fig. 7. The construction was described in Example 2, and
will not be formalized.

Step 4: DPT Emptiness Check

The language of A T
ϕ is non-empty iff it contains a ΣO -labeled ΣI -tree, i.e., iff

player 1 (the system) has a winning strategy in the corresponding game. (See Exam-
ple 3 for the correspondence between DPTs and games.) We can use the techniques
describes in Sect. 27.2 to check whether A T

ϕ (a parity game) is empty.

27 Graph Games and Reactive Synthesis 945

Fig. 8 Streett tree automaton for ϕA (generated from the automaton in Fig. 7). The bold arrows
denote a winning (memoryless) strategy for player 1 in the corresponding Streett game

In general, the LTL formula is translated into a parity game with 22O(|ϕ|)
states and

2O(|ϕ|) priorities, which can be solved in polynomial time in the number of states
and exponential time in the number of priorities (see Theorem 3). A corresponding
doubly exponential lower bound for LTL synthesis was shown by Rosner [150].

Step 5: Construction of Finite-State Transducer

If the language of the deterministic parity tree automaton A T
ϕ is non-empty, then

there exists a winning memoryless strategy for player 1 in the corresponding parity
game. The strategy corresponds to a regular tree, and regular trees coincide with
finite-state transducers.

Example 8 (Arbiter Example (Cont.)) The winning objective of player 1 is to visit
the set {q0, q2} and {q0, q1} infinitely often. The bold arrows in Fig. 8 denote a
memoryless winning strategy for player 1 in the corresponding game, where states
q0, . . . , q3 correspond to player-1 states of the game and the transitions t1, . . . , t8
are the player-2 states. Note that memoryless strategies suffice for parity games.
(For Streett games, which we use in the example, memoryless strategies are not
sufficient, see Sect. 27.2.2.)

The strategy corresponds to the finite-state transducer shown in Fig. 9 with the
three states q0, q1 and q2 labeled with {g2}, {g1ḡ2}, and {g2}, respectively. Following
the strategy, the transducer initially outputs g2, and then moves to q0 or q1 depend-
ing on the input. If Client 1 sends a request (i.e., r1 is high), then the transducer

946 R. Bloem et al.

Fig. 9 Finite-state transducer
implementing the
specification ϕA

moves to state q1 and sends a grant to Client 1 (i.e., it outputs g1). Otherwise, the
arbiter grants the shared resource to Client 2 by raising g2. State q3 is not reachable
with the given strategy.

Theorem 7 ([30, 142, 146]) Given an LTL formula ϕ, we can decide in 22O(|ϕ|)
time

whether ϕ is realizable. If an LTL formula ϕ is realizable, then there exists a finite-
state transducer with at most 22O(|ϕ|)

states that satisfies it. Both these bounds are
tight.

27.3.5 Recent Approaches to LTL Synthesis

We describe two main ideas to cope with the complexity of the LTL synthesis prob-
lem: (i) bounding the size of the generated systems and (ii) specialized procedures
for specification with restricted expressiveness, and combinations thereof. Recent
approaches are based on one or both ideas.

27.3.5.1 Bounded (or Safraless) Approaches

The idea of bounded synthesis approaches [93, 120, 156] is to restrict the size of the
generated system. These algorithms are also called Safraless, because they avoid
Safra’s determinization construction. Bounded synthesis algorithms are based on
the following two key insights, which were first presented by Kupferman and Vardi
[120].

1. The LTL synthesis problem can be reduced to the language emptiness check of a
universal co-Büchi tree automaton (UCT).

2. The language emptiness problem of UCTs can be reduced to a parametric empti-
ness check, where the parameter restricts the size of the trees of interest (and
hence the size of the generated system).

In [120], the emptiness problem of a universal co-Büchi tree automaton with param-
eter k (k-UCT) is reduced to the emptiness problem of a nondeterministic Büchi tree
automaton. Checking emptiness of a nondeterministic Büchi tree automaton in turn
corresponds to solving a Büchi game [101]. For the purpose of this paper, we can
assume that k limits the number of times that the automaton can visit a co-Büchi

27 Graph Games and Reactive Synthesis 947

state [156]. In [156], Schewe and Finkbeiner present a reduction of the k-UCT
emptiness problem to emptiness of deterministic safety tree automata. The exact
meaning of k is different in [120], but the general idea is the same. These bounded
approaches are well suited for symbolic implementations. Schewe and Finkbeiner
propose an encoding as an SMT formula, while Filiot, Jin, and Raskin [93] pro-
vide a symbolic algorithm for checking k-UCT emptiness using anti-chains. (see
also [82]). Bounded approaches can also be used as a semi-decision procedure for
distributed synthesis [156].

A bounded synthesis algorithm consists of the following steps:

1. Translate the LTL formula ϕ into a UCT A .
2. Transform A into a k-UCT Ak for a given parameter k.
3. Check emptiness of Ak (solving a Büchi or Safety game).
4. If Ak is non-empty, construct an FSM M , otherwise increase k and go to Step 2

or abort.

For realizable specifications the parameter k turns out to be small in practice
[93, 108], leading to an efficient LTL synthesis procedure if the specification is
realizable. In order to conclude that a specification is unrealizable, we must show
that Ak is empty for a very large k (doubly exponential in the size of the formula ϕ,
see Theorems 8 and 9). However, it follows from the remarks in Sect. 27.3.3 that in
case of unrealizability there is a Mealy machine for the environment that realizes ¬φ

which can be found in much the same manner as the Moore machine for the system.
Again, in practice this machine can be quite small and is then found quickly.

Step 1: LTL to UCT

Given an LTL formula and a partitioning of the atomic propositions, we can con-
struct a universal co-Büchi tree automaton that accepts all state machines that realize
the formula. Intuitively, we construct an NBW for the negated formula (see Step 1 in
Sect. 27.3.4). We then dualize the acceptance condition and the branching condition
and transform the automaton into a tree automaton as described above.

Theorem 8 ([120], Theorem 5.1) The realizability problem for an LTL formula
can be reduced to the non-emptiness problem for a UCT with exponentially many
states.

Example 9 (Arbiter Example (Cont.)) Recall the specification of the arbiter from
Example 5: ϕ = �(¬g1 ∨¬g2)∧�(r1 → ♦g1)∧�(r2 → ♦g2). We can construct
a UCT for ϕ by first constructing an NBW for the negation of the specification, i.e.,
¬ϕ = ♦(g1 ∧ g2) ∨ ♦(r1 ∧ �¬g1) ∨ ♦(r2 ∧ �¬g2). Note that ¬ϕ simplifies to
♦((g1 ∧ g2) ∨ (r1 ∧�¬g1) ∨ (r2 ∧�¬g2)) for which we show an NBW in Fig. 4.
The automaton accepts a word in one of the following cases. Each case corresponds
to violating the specification in a particular way: (i) Any word that includes simulta-
neous grants at some point will be accepted. In this case the automaton stays in state

948 R. Bloem et al.

q0 until g1g2 occurs and then moves to state q3, which is accepting and can be re-
visited independently of the values of the grant and request signals. (ii) A word that
includes a request 1 but no subsequent grant 1 is accepting. In order to see this, note
that the automaton again can stay in state q0 until the unanswered request 1 arrives,
then it moves to state q2, where it can stay as long as it does not observe a grant 1
(i.e., as long as the request is unanswered). (iii) The situation for an outstanding
request 2 is analogous. In this case the automaton will move to state q1.

Given this NBW and a splitting of the atomic propositions into inputs r1, r2 and
output propositions g1, g2, we construct the UCT shown in Fig. 5. The alphabet
of the tree automaton is 2{g1,g2}; each tree has four directions corresponding to the
letters in 2{r1,r2}. The dualization of the branching mode means that nondeterministic
edges are now viewed as universal edges. Dualizing the Büchi condition results in a
co-Büchi acceptance condition.

Step 2: UCT to k-UCT

We will present the reduction from UCT emptiness to emptiness of deterministic
safety tree automata, which corresponds to finding the winning player in games with
safety objectives. The reduction to Büchi games can be found in [120], Theorem 3.3.
Note that in the reduction to Büchi games the parameter k is used in a different way
than in the reduction presented here.

The reduction from UCT emptiness to safety games is best explained in two
steps. In the first step, we reduce the UCT emptiness problem to the emptiness
problem of a tree automaton with a simpler universal k-co-Büchi acceptance condi-
tion, which asks that every path of an accepting run visits a co-Büchi state at most
k times [156]. In the second step, we show how to check whether the language of a
universal k-co-Büchi tree automaton is empty by constructing an equivalent safety
game and solving it.

Given a UCT A , we write Ak to denote the tree automaton with the same struc-
ture as A and the universal k-co-Büchi acceptance condition. For any UCT A and
any parameter k, LT (Ak) ⊆ LT (A) holds, so if the language of Ak is non-empty,
then so is the language of A .

For the other direction, we will use the following two lemmas. The first one
shows that if the language of the UCT A is non-empty, then there exists a finite-
state machine of bounded size that is accepted by A . The second states that a given
finite-state machine is accepted by automaton A if and only if it is accepted by the
automaton Ak , where k = |M | · |A |.

Lemma 1 ([120], Theorem 4.3) Given a UCT A with n states, if the language of
A is not empty, i.e., LT (A) �= ∅, there exists a (non-empty) finite-state machine
M with at most nn+1 + 1 states such that LT (M) ⊆ LT (A) (meaning that the
tree generated by M is accepted by A).

27 Graph Games and Reactive Synthesis 949

Lemma 2 ([156]) Given a finite-state machine M and a UCT A , then A accepts
M if and only if the k-UCT Ak with k = |M | · |A | accepts M , i.e., LT (M) ⊆
LT (A) iff LT (M) ⊆ LT (A|M |·|A |) holds.

From Lemmas 1 and 2, it follows that if the language of a UCT A of size n is
non-empty, then so is the language of the k-UCT Ak with k = (nn+1 + 1) ·n and we
can obtain the following theorem.

Theorem 9 ([156]) For any UCT A of size n, there exists a k-UCT Ak with k =
(nn+1 + 1) · n such that LT (A) = ∅ iff LT (Ak) = ∅.

Note that a UCT and a k-UCT differ only in the interpretation of the acceptance
condition. A UCT accepts all trees that allow a run on which none of the paths visits
rejecting states infinitely often. A k-UCT is more restricted; it allows at most k visits
to the rejecting states. So, Fig. 5 can be seen as a UCT or as a k-UCT.

Step 3: k-UCT Emptiness Check

Given a k-UCT, we can construct a safety game with labels (i.e., a deterministic
safety tree automaton) such that the safety game is winning if and only if the lan-
guage of the k-UCT is not empty.

Lemma 3 ([156]) Given a k-UCT A with n states, there exists a deterministic
safety tree automaton B with (k + 2)n states such that LT (A) = LT (B).

This lemma can be proven as follows. Intuitively, B is constructed from A by
applying an extended subset construction that keeps track of how many rejecting
states (i.e., states in F) have been visited so far along all the paths ending in a state
of A . To do that, B has a counter for every state in A that counts from −1 up to
k +1. A state of B is an evaluation of all the counters. Counter value −1 of a state q

means that state q is not reached in the current step of the subset construction. For-
mally, let A = 〈2I ,2O ,Q,q0, δ,F 〉, then B = 〈2I ,2O , S, s0, δB,FB〉 is given
by

S = Q → {−1,0, . . . , k + 1}
s0(q) =

{
0 if q = q0

−1 otherwise.
δB(s, o) = ∧

i∈2I (i, s′), where

s′(q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

k + 1 if ∃p : (i, q) ∈ δ(p, o) ∧ s(p) = k + 1,

maxp∈Q:(i,q)∈δ(p,o){s(p)+1} if ∃p : (i, q) ∈ δ(p, o) ∧ −1<s(p)<k + 1∧
q ∈ F,

maxp∈Q:(i,q)∈δ(p,o){s(p)} if ∃p : (i, q) ∈ δ(p, o) ∧ −1<s(p)<k + 1∧
q /∈ F,

−1 otherwise (∀p : (i, q) /∈ δ(p, o) ∨ s(p) = −1).

FB = {s ∈ S | ∀q ∈ Q : s(q) < k + 1}

950 R. Bloem et al.

Fig. 10 Safety game (with
labels) for the UCT shown in
Fig. 5, with k = 1. The bold
arrows represent a winning
strategy from all winning
states for player circle

Note that for each label o ∈ 2O , the automaton B has exactly one successor for each
direction i ∈ 2I .

Example 10 (Arbiter Example (Cont.)) Recall the UCT from Fig. 5. Assume we fix
k = 1, i.e., for every path we allow at most one visit to a rejecting state. In each
player-1 state of the safety game we store two pieces of information: (i) the set of
active states (of the UCT) in the current run and (ii) the number of rejecting states we
have seen along the way. As shown after Lemma 3 we can represent this information
by a function mapping from the UCT states to a number between −1 and k, i.e., the
state (q0 → 0, q1 → 2, q2 → −1, q3 → −1) indicates that the run is currently in
state q0 and q1 and that on the path to q1 we have seen two rejecting states (see the
third level of the run on the right of Fig. 6). Figure 10 shows the safety game for
the UCT shown in Fig. 5 with k = 1. In order to save space we omit UCT-states that
are assigned to −1 in the description of the player-1 states. For simplicity, we label
player-2 states with transitions of the UCT. In order to keep the game graph small,
we also omit “unsafe” states, which are states in which a UCT-state is mapped to a
number higher than k. This leads to several player-2 states without outgoing edges,
called dead-end states. In all these states, player 2 wins because he could move to an

27 Graph Games and Reactive Synthesis 951

unsafe state. So, the (safety) winning condition for player 1 in this game is to avoid
these dead-end states.

The game starts in state (q0 → 0). The system (player 1) has four options corre-
sponding to the four output letters. If she chooses the letter ḡ1g2 the play continues
in state t2, from which player 2 can choose one of the four directions. If he chooses
a direction that includes a request to Client 1 (r1), then the play moves to state
(q0 → 0, q2 → 1). Note that on the path to state q2, we have seen one rejecting state
(namely q2 itself), therefore q2 is mapped to 1. Intuitively, q2 indicates that there is
an outstanding request from Client 1, so staying in q2 forever violates the specifica-
tion. Since we have chosen k = 1, we are only allowed to visit q2 for one step (which
corresponds to delaying the grant by one step). So, from state (q0 → 0, q2 → 1) the
automaton has to choose g1ḡ2 in order to avoid one of the losing dead-end states.
If we solve this game, we conclude that only the following five states are winning:
(q0 → 0), (t1), (t2), (q0 → 0, q2 → 1), and (q0 → 0, q1 → 1). The bold arrows in
Fig. 10 show a winning strategy, which corresponds to the system shown in Fig. 9.
The system sends by default a grant to Client 2. If it receives a request from Client 1,
it responds to it in the next step. If it receives a request from Client 2 while sending
a grant to Client 1, it will respond to it in the next step. If no request is outstanding
it moves back to the default behavior (i.e., sending a grant to Client 2).

Step 4: System Construction

Once a winning strategy is found, we can construct the desired system following
Step 5 of the classical approach.

27.3.5.2 Approaches for Fragments of LTL

We will now consider another approach to making synthesis more efficient by con-
sidering specification with restricted expressiveness.

The four simplest LTL fragments are (i) invariants (�p), (ii) reachability prop-
erties (♦p), (iii) recurrence properties (�♦p), and (iv) persistence properties
(♦�p). These fragments can be translated directly into the corresponding synthesis
games: invariants translate into safety games, reachability properties into reachabil-
ity games, recurrence properties into Büchi games, and persistence properties into
co-Büchi games. Each of these fragments by itself is not expressive enough to spec-
ify a complete system. However, they are very useful in the context of controller
synthesis [147, 148]. For example, given a system with deadlocks, we can ask for a
controlled system that is deadlock-free.

Alur and La Torre [10] provide a comprehensive study of generators for deter-
ministic automata and complexity analysis of various LTL fragments. Here, we will
focus on a recent approach by Piterman, Pnueli, and Sa’ar [140] for LTL formulas
in the Generalized Reactivity-1 (GR(1)) fragment, because this fragment lends itself
to an efficient symbolic implementation.

952 R. Bloem et al.

Specifications in GR-(1) are of the form

env1 ∧ · · · ∧ envn → sys1 ∧ · · · ∧ sysm,

where every sub-formula envi and sysi can be represented by a deterministic Büchi
automaton.3 The intuition is that env1, . . . ,envn are formulas describing assump-
tions on the environment and sys1, . . . , sysm specify the desired behavior of the
system if all the environment assumptions are satisfied.

The approach proceeds as follows: first, every sub-formula envi (sysi) is trans-
lated into a deterministic Büchi automaton. Each automaton is represented symbol-
ically by (i) an initial predicate, (ii) a transition predicate, and (iii) a predicate de-
scribing the Büchi states. The initial and Büchi predicate refer to the atomic proposi-
tions and the set of state variables. As usual, the transition predicate may refer to the
current and next values of the atomic propositions and the state variables. Then, the
initial and transition predicates obtained from the different sub-formulas are con-
joined to make a single initial predicate and a single transition system. On this tran-
sition system, we define the following acceptance condition using the set of Büchi
predicates φe

1, . . . , φ
e
n obtained from environment assumptions and the predicates

φs
1, . . . , φ

s
m obtained from the system guarantees. A path ρ through the transition

system is accepting iff all system predicates φs
i are true infinitely often along the

path or if some environment predicate φe
i is true only finitely often along the path.

This is a generalized Streett condition with a single Streett pair (see Sect. 27.2.4).
Finally, this transition system is transformed into a game by splitting the transition
predicate into two parts: one part that modifies the input variables and one part that
modifies the output variables. In this way, we obtain a symbolic representation of a
generalized Streett-1 game, which can be solved symbolically using a triply nested
fix-point (see [140] and Sect. 27.2.4).

There are several further approaches whose strength is based on a decompo-
sition of the specification (according to the top-level Boolean structure, for in-
stance) together with appropriate handling of the parts. Notable examples are
[82, 117, 132, 160]. The GR(1) synthesis algorithm was extended to specifications
in the intersection of LTL and ACTL by Ehlers [81].

3One way to syntactically characterize such sub-formulas is to require them to be in the set
LTLdet [122], which is the set of formulas defined as follows:

ϕ ::= p | ϕ ∧ ϕ | ©ϕ | (p ∧ ϕ) ∨ (¬p ∧ ϕ) | (p ∧ ϕ)U(¬p ∧ ϕ) | (p ∧ ϕ)W(¬p ∧ ϕ),

where p is an arbitrary atomic proposition. Note that this set includes invariants (�p) and the
formula ¬p Up, which is equivalent to ♦p. In [140], the authors provide a different set of syntactic
restrictions.

27 Graph Games and Reactive Synthesis 953

27.4 Related Topics

In this chapter we have considered perfect-information turn-based zero-sum games
for synthesis from linear-time logical specifications. Perfect-information zero-sum
games are used in several applications other than temporal logic synthesis.

In controller synthesis, we are given a nondeterministic system and we aim to re-
strict (control) the nondeterministic choices such that the controlled system satisfies
the given specification. Synthesis from logical specifications and controller synthe-
sis focus on different aspects of the synthesis problem. Research in the area of syn-
thesis from logical specifications initially concentrated on developing new synthesis
algorithms for more expressive logics, while controller synthesis focused on how to
efficiently compute restrictions for a system composed of several sub-components.
For an introduction to control theory of discrete-event systems we refer the reader
to [31]. Discrete-event control theory has been used, for instance, to automatically
avoid deadlocks in multi-threaded programs [179] or for synthesis of fault-tolerant
systems [100].

Several approaches use controller synthesis to combine synthesis with imperative
programming, thus avoiding the need to fully specify the system. Such approaches
include program sketching [162, 163], program repair [11, 109], and synthesis of
concurrent data structures [161] and synchronizations [172, 173]. It should be noted
that some of these approaches use very different theory from what is presented in
this chapter and that automatic programming has a much richer background than
can be covered in this chapter [113, 114, 116]. See [21] for an overview of recent
program synthesis techniques.

Other classes of games are also relevant in synthesis. While standard LTL synthe-
sis reduces to perfect-information games, synthesis in the distributed setting reduces
to multi-player partial-information games and distributed games [94, 118, 121, 144].
Distributed synthesis is undecidable in general but semi-decision procedures exist
[156]. For the related case of parameterized systems, see [107].

The extension of synthesis to an assume-guarantee setting requires solving non-
zero-sum games (namely secure equilibria) [55, 59]; and has been applied to pro-
tocol synthesis [69, 70]. Synthesis problems for resource constraints [32, 33], for
performance guarantees [19], and for synthesis of robust systems [20] entail non-
Boolean properties and reduce to games with quantitative objectives. Synthesis
problems in probabilistic environments [12, 58, 152] or for synthesizing environ-
ment assumptions for synthesis reduce to stochastic games [57].

The games we have discussed are generalizations of finite automata. It is also
possible to generalize other automata models, for instance to pushdown games [168,
177] or timed games. Timed games and controller synthesis for timed automata are
discussed in Chap. 29 in this Handbook [23]. Finally, the close connection between
games and verification is the subject of Chap. 26 in this Handbook [24].

954 R. Bloem et al.

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of reactive
systems. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) Intl. Colloquium
on Automata, Languages and Programming (ICALP). LNCS, vol. 372, pp. 1–17. Springer,
Heidelberg (1989)

2. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The element of
surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.) Intl. Conf. on Concurrency
Theory (CONCUR). LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)

3. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Tjoa, A.M., Gruhn, V. (eds.) Intl.
Symp. on Foundations of Software Engineering (FSE), pp. 109–120. ACM, New York
(2001)

4. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In: Henzinger,
T.A., Kirsch, C.M. (eds.) Intl. Conf. on Embedded Software (EMSOFT). LNCS, vol. 2211,
pp. 148–165. Springer, Heidelberg (2001)

5. de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. Theor. Com-
put. Sci. 386(3), 188–217 (2007)

6. de Alfaro, L., Henzinger, T.A., Mang, F.: Detecting errors before reaching them. In: Emerson,
E.A., Sistla, A.P. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 1855,
pp. 186–201. Springer, Heidelberg (2000)

7. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. In: Vitter, J.S.,
Spirakis, P.G., Yannakakis, M. (eds.) Annual ACM Symposium on Theory of Computing
(STOC), pp. 675–683. ACM, New York (2001)

8. Alur, R., Bodík, R., Dallal, E., Fisman, D., Garg, P., Juniwal, G., Kress-Gazit, H., Mad-
husudan, P., Martin, M.M.K., Raghothaman, M., Saha, S., Seshia, S.A., Singh, R., Solar-
Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: Irlbeck, M., Peled, D.A.,
Pretschner, A. (eds.) Dependable Software Systems Engineering, pp. 1–25. IOS Press, Am-
sterdam (2015)

9. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49, 672–
713 (2002)

10. Alur, R., Torre, S.L.: Deterministic generators and games for LTL fragments. In: Symp. on
Logic in Computer Science (LICS), pp. 291–302. IEEE, Piscataway (2001)

11. Antoniotti, M.: Synthesis and verification of discrete controllers for robotics and manufactur-
ing devices with temporal logic and the Control-D system. Ph.D. thesis, New York University
(1995)

12. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis for proba-
bilistic systems. In: IFIP Intl. Conf. on Theoretical Computer Science, pp. 493–506 (2004)

13. Beeri, C.: On the membership problem for functional and multivalued dependencies in rela-
tional databases. ACM Trans. Database Syst. 5, 241–259 (1980)

14. Bertrand, N., Genest, B., Gimbert, H.: Qualitative determinacy and decidability of stochastic
games with signals. In: Symp. on Logic in Computer Science (LICS), pp. 319–328. IEEE,
Piscataway (2009)

15. Björklund, H., Sandberg, S., Vorobyov, S.: A discrete subexponential algorithms for par-
ity games. In: Annual Symposium on Theoretical Aspects of Computer Science (STACS).
LNCS, vol. 2607, pp. 663–674. Springer, Heidelberg (2003)

16. Bjorklund, H., Sandberg, S., Vorobyov, S.: A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. In: Intl. Symp. on Mathematical Foundations
of Computer Science (MFCS). LNCS, vol. 3153, pp. 673–685. Springer, Heidelberg (2004)

17. Blass, A., Gurevich, Y., Nachmanson, L., Veanes, M.: Play to test. In: Intl. Conf. on Formal
Approaches to Software Testing (FATES). LNCS, vol. 3997. Springer, Heidelberg (2005)

18. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Jobstmann, B.: Robustness in
the presence of liveness. In: Intl. Conf. on Computer-Aided Verification (CAV). LNCS,
vol. 6174, pp. 410–424. Springer, Heidelberg (2010)

27 Graph Games and Reactive Synthesis 955

19. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis
through quantitative objectives. In: Intl. Conf. on Computer-Aided Verification (CAV).
LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

20. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust systems. In:
Formal Methods in Computer Aided Design (FMCAD), pp. 85–92. IEEE, Piscataway (2009)

21. Bodík, R., Jobstmann, B.: Algorithmic program synthesis: introduction. Int. J. Softw. Tools
Technol. Transf. 15(5–6), 397–411 (2013)

22. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted
timed automata with energy constraints. In: Intl. Conf. on Formal Modeling and Analysis of
Timed Systems (FORMATS). LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

23. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Ouaknine, J., Worrell, J., Verification
of real-time systems. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook
of Model Checking. Springer, Heidelberg (2018)

24. Bradfield, J., Walukiewicz, I.: The mu-calculus. In: Clarke, E.M., Henzinger, T.A., Veith, H.,
Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018)

25. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on multiple mean-
payoff objectives in Markov decision processes. In: Symp. on Logic in Computer Science
(LICS), pp. 33–42. IEEE, Piscataway (2011)

26. Brázdil, T., Chatterjee, K., Forejt, V., Kucera, A.: Trading performance for stability in
Markov decision processes. In: Symp. on Logic in Computer Science (LICS), pp. 331–340.
IEEE, Piscataway (2013)

27. Brázdil, T., Chatterjee, K., Kucera, A., Novotný, P.: Efficient controller synthesis for con-
sumption games with multiple resource types. In: Intl. Conf. on Computer-Aided Verification
(CAV). LNCS, vol. 7358, pp. 23–38. Springer, Heidelberg (2012)

28. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.F.: Faster algorithms for mean-
payoff games. Form. Methods Syst. Des. 38(2), 97–118 (2011)

29. Bryant, R.E.: Binary decision diagrams: an algorithmic basis for symbolic model checking.
In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking.
Springer, Heidelberg (2018)

30. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans.
Am. Math. Soc. 138, 295–311 (1969)

31. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn. Springer,
Heidelberg (2008)

32. Cerný, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantitative synthe-
sis for concurrent programs. In: Intl. Conf. on Computer-Aided Verification (CAV). LNCS,
vol. 6806, pp. 243–259. Springer, Heidelberg (2011)

33. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Intl.
Conf. on Embedded Software (EMSOFT). LNCS, vol. 2855, pp. 117–133. Springer, Heidel-
berg (2003)

34. Chatterjee, K.: Stochastic ω-regular games. Ph.D. thesis, UC Berkeley (2007)
35. Chatterjee, K.: The complexity of stochastic Müller games. Inf. Comput. 211, 29–48 (2012)
36. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of stochastic Rabin and Streett

games. In: Intl. Colloquium on Automata, Languages and Programming (ICALP). LNCS,
vol. 3580, pp. 878–890. Springer, Heidelberg (2005)

37. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of quantitative concurrent
parity games. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 678–687.
ACM/SIAM, New York/Philadelphia (2006)

38. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: Strategy improvement in concurrent reach-
ability games. In: Intl. Conf. on Quantitative Evaluation of Systems (QEST), pp. 291–300.
IEEE, Piscataway (2006)

39. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: Qualitative concurrent parity games. ACM
Trans. Comput. Log. 12(4), 28 (2011)

956 R. Bloem et al.

40. Chatterjee, K., Chmelik, M., Tracol, M.: What is decidable about partially observable
Markov decision processes with omega-regular objectives. In: Annual Conf. on Computer
Science Logic (CSL). LIPIcs, vol. 23 (2013)

41. Chatterjee, K., Doyen, L.: The complexity of partial-observation parity games. In: Intl. Conf.
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). LNCS, vol. 6397,
pp. 1–14. Springer, Heidelberg (2010)

42. Chatterjee, K., Doyen, L.: Energy parity games. Theor. Comput. Sci. 458, 49–60 (2012)
43. Chatterjee, K., Doyen, L.: Partial-observation stochastic games: how to win when belief fails.

In: Symp. on Logic in Computer Science (LICS), pp. 175–184. IEEE, Piscataway (2012)
44. Chatterjee, K., Doyen, L., Gimbert, H., Henzinger, T.A.: Randomness for free. In: Intl. Symp.

on Mathematical Foundations of Computer Science (MFCS). LNCS, vol. 6281, pp. 246–257.
Springer, Heidelberg (2010)

45. Chatterjee, K., Doyen, L., Henzinger, T., Raskin, J.F.: Generalized mean-payoff and energy
games. In: Annual Conf. on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS). LIPIcs, vol. 8, pp. 505–516. Schloss Dagstuhl—LZI, Dagstuhl (2010)

46. Chatterjee, K., Doyen, L., Henzinger, T.A.: Qualitative analysis of partially-observable
Markov decision processes. In: Intl. Symp. on Mathematical Foundations of Computer Sci-
ence (MFCS). LNCS, vol. 6281, pp. 258–269. Springer, Heidelberg (2010)

47. Chatterjee, K., Doyen, L., Henzinger, T.A.: A survey of partial-observation stochastic parity
games. Form. Methods Syst. Des. 43(2), 268–284 (2013)

48. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.: Algorithms for omega-regular games
with imperfect information. In: Annual Conf. on Computer Science Logic (CSL). LNCS,
vol. 4207, pp. 287–302. Springer, Heidelberg (2006)

49. Chatterjee, K., Doyen, L., Nain, S., Vardi, M.Y.: The complexity of partial-observation
stochastic parity games with finite-memory strategies. In: Intl. Conf. on Foundations of Soft-
ware Science and Computational Structures (FoSSaCS). LNCS, vol. 8412. Springer, Heidel-
berg (2014)

50. Chatterjee, K., Forejt, V., Wojtczak, D.: Multi-objective discounted reward verification in
graphs and MDPs. In: Intl. Conf. on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR). LNCS, vol. 8312. Springer, Heidelberg (2013)

51. Chatterjee, K., Goyal, P., Ibsen-Jensen, R., Pavlogiannis, A.: Faster algorithms for algebraic
path properties in recursive state machines with constant treewidth. In: Symp. on Principles
of Programming Languages (POPL). ACM, New York (2015)

52. Chatterjee, K., Henzinger, M.: An O(n2) time algorithm for alternating Büchi games. In:
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1386–1399 (2012)

53. Chatterjee, K., Henzinger, M.: Efficient and dynamic algorithms for alternating Büchi games
and maximal end-component decomposition. J. ACM 61(3), 15:1–15:40 (2014)

54. Chatterjee, K., Henzinger, T.A.: Semiperfect-information games. In: Annual Conf. on Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS). LNCS,
vol. 3821, pp. 1–18. Springer, Heidelberg (2005)

55. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Intl. Conf. on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 4424, pp. 261–
275. Springer, Heidelberg (2007)

56. Chatterjee, K., Henzinger, T.A.: A survey of stochastic omega-regular games. J. Comput.
Syst. Sci. 78(2), 394–413 (2012)

57. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for synthesis.
In: Intl. Conf. on Concurrency Theory (CONCUR). CONCUR, vol. 2008, pp. 147–161.
Springer, Heidelberg (2008)

58. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthesizing sys-
tems in probabilistic environments. In: Intl. Conf. on Computer-Aided Verification (CAV).
LNCS, vol. 6174, pp. 380–395. Springer, Heidelberg (2010)

59. Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Games with secure equilibria. In: Symp. on
Logic in Computer Science (LICS), pp. 160–169. IEEE, Piscataway (2004)

27 Graph Games and Reactive Synthesis 957

60. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In: Symp. on
Logic in Computer Science (LICS), pp. 178–187 (2005)

61. Chatterjee, K., Henzinger, T.A., Piterman, N.: Algorithms for Büchi games. In: Workshop
on Games in Design and Verification (GDV) (2006)

62. Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized parity games. In: Intl. Conf.
on Foundations of Software Science and Computational Structures (FoSSaCS). LNCS,
vol. 4423, pp. 153–167. Springer, Heidelberg (2007)

63. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208(6), 677–693
(2010)

64. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Simple stochastic parity games. In: Annual
Conf. on Computer Science Logic (CSL). LNCS, vol. 2803, pp. 100–113. Springer, Heidel-
berg (2003)

65. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity games. In:
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 121–130. SIAM, Philadelphia
(2004)

66. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with multiple
objectives. In: Annual Symposium on Theoretical Aspects of Computer Science (STACS).
LNCS, vol. 3884, pp. 325–336. Springer, Heidelberg (2006)

67. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Stochastic limit-average games are in EXP-
TIME. Int. J. Game Theory 37(2), 219–234 (2008)

68. Chatterjee, K., Pavlogiannis, A., Velner, Y.: Quantitative interprocedural analysis. In: Symp.
on Principles of Programming Languages (POPL). ACM, New York (2015)

69. Chatterjee, K., Raman, V.: Synthesizing protocols for digital contract signing. In: Intl. Conf.
on Verification, Model Checking and Abstract Interpretation (VMCAI). LNCS, vol. 7148,
pp. 152–168. Springer, Heidelberg (2012)

70. Chatterjee, K., Raman, V.: Assume-guarantee synthesis for digital contract signing. Form.
Asp. Comput. 26(4), 825–859 (2014)

71. Chatterjee, K., Randour, M., Raskin, J.F.: Strategy synthesis for multi-dimensional quan-
titative objectives. In: Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 7454,
pp. 115–131. Springer, Heidelberg (2012)

72. Chatterjee, K., Velner, Y.: Mean-payoff pushdown games. In: Symp. on Logic in Computer
Science (LICS), pp. 195–204. IEEE, Piscataway (2012)

73. Chatterjee, K., Velner, Y.: Hyperplane separation technique for multidimensional mean-
payoff games. In: Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 8052, pp. 500–
515. Springer, Heidelberg (2013)

74. Chen, T., Forejt, V., Kwiatkowska, M.Z., Simaitis, A., Wiltsche, C.: On stochastic games
with multiple objectives. In: Intl. Symp. on Mathematical Foundations of Computer Science
(MFCS). LNCS, vol. 8087, pp. 266–277. Springer, Heidelberg (2013)

75. Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress
of Mathematicians, pp. 23–35. Institut Mittag-Leffler, Djursholm (1962)

76. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs. LNCS, vol. 131,
pp. 52–71. Springer, Heidelberg (1981)

77. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224 (1992)
78. Condon, A.: On algorithms for simple stochastic games. In: Advances in Computational

Complexity Theory. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 13, pp. 51–73. AMS, Providence (1993)

79. Dill, D.L.: Trace theory for automatic hierarchical verification of speed-independent circuits.
Ph.D. thesis, ACM Distinguished Dissertation Series. MIT Press (1989)

80. Dziembowski, S., Jurdziński, M., Walukiewicz, I.: How much memory is needed to win infi-
nite games? In: Symp. on Logic in Computer Science (LICS), pp. 99–110. IEEE, Piscataway
(1997)

81. Ehlers, R.: ACTL ∩ LTL synthesis. In: Intl. Conf. on Computer-Aided Verification (CAV).
LNCS, vol. 7358, pp. 39–54. Springer, Heidelberg (2012)

958 R. Bloem et al.

82. Ehlers, R.: Symbolic bounded synthesis. Form. Methods Syst. Des. 40(2), 232–262 (2012)
83. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game

Theory 8(2), 109–113 (1979)
84. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchro-

nization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)
85. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. In:

Annual Symp. on Foundations of Computer Science (FOCS), pp. 328–337. IEEE, Piscataway
(1988)

86. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Annual Symp.
on Foundations of Computer Science (FOCS), pp. 368–377. IEEE, Piscataway (1991)

87. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. Log. Methods Comput. Sci. 4(4) (2008)

88. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and state
space reduction for Büchi automata. SIAM J. Comput. 34(5), 1159–1175 (2005)

89. Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive stochastic
games. In: Intl. Colloquium on Automata, Languages and Programming (ICALP). LNCS,
vol. 3580, pp. 891–903. Springer, Heidelberg (2005)

90. Etessami, K., Yannakakis, M.: Recursive concurrent stochastic games. In: Intl. Colloquium
on Automata, Languages and Programming (ICALP). LNCS, vol. 4052, pp. 324–335.
Springer, Heidelberg (2006)

91. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other fixed points.
SIAM J. Comput. 39(6), 2531–2597 (2010)

92. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)
93. Filiot, E., Jin, N., Raskin, J.F.: An antichain algorithm for LTL realizability. In: Intl. Conf. on

Computer-Aided Verification (CAV). LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg
(2009)

94. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Symp. on Logic in Computer
Science (LICS), pp. 321–330. IEEE, Piscataway (2005)

95. Finkbeiner, B., Schewe, S.: Coordination logic. In: Annual Conf. on Computer Science Logic
(CSL). LNCS, vol. 6247, pp. 305–319. Springer, Heidelberg (2010)

96. Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Quantitative multi-objective
verification for probabilistic systems. In: Intl. Conf. on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS). LNCS, vol. 6065, pp. 112–127. Springer, Hei-
delberg (2011)

97. Friedmann, O.: An exponential lower bound for the parity game strategy improvement algo-
rithm as we know it. In: Symp. on Logic in Computer Science (LICS), pp. 145–156. IEEE,
Piscataway (2009)

98. Friedmann, O.: Exponential lower bounds for solving infinitary payoff games and linear
programs. Ph.D. thesis, University of Munich (2011)

99. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Intl. Conf. on Computer-
Aided Verification (CAV). LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)

100. Girault, A., Rutten, É.: Automating the addition of fault tolerance with discrete controller
synthesis. Form. Methods Syst. Des. 35(2), 190–225 (2009)

101. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Annual ACM Symposium on
Theory of Computing (STOC), pp. 60–65. ACM, New York (1982)

102. Hansen, K.A., Koucký, M., Lauritzen, N., Miltersen, P.B., Tsigaridas, E.P.: Exact algorithms
for solving stochastic games: extended abstract. In: Annual ACM Symposium on Theory of
Computing (STOC), pp. 205–214 (2011)

103. Henzinger, T.A., Krishnan, S., Kupferman, O., Mang, F.: Synthesis of uninitialized systems.
In: Intl. Colloquium on Automata, Languages and Programming (ICALP). LNCS, vol. 2380,
pp. 644–656. Springer, Heidelberg (2002)

104. Henzinger, T.A., Kupferman, O., Rajamani, S.: Fair simulation. Inf. Comput. 173, 64–81
(2002)

27 Graph Games and Reactive Synthesis 959

105. Horn, F.: Streett games on finite graphs. In: Workshop on Games in Design and Verification
(GDV) (2005)

106. Immerman, N.: Number of quantifiers is better than number of tape cells. J. Comput. Syst.
Sci. 22, 384–406 (1981)

107. Jacobs, S., Bloem, R.: Parameterized synthesis. In: Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). LNCS, vol. 7214, pp. 362–376.
Springer, Heidelberg (2012)

108. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: Formal Methods in Com-
puter Aided Design (FMCAD), pp. 117–124. IEEE, Piscataway (2006)

109. Jobstmann, B., Staber, S., Griesmayer, A., Bloem, R.: Finding and fixing faults. J. Comput.
Syst. Sci. 78(2), 441–460 (2012)

110. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process. Lett.
68(3), 119–124 (1998)

111. Jurdziński, M.: Small progress measures for solving parity games. In: Annual Symposium
on Theoretical Aspects of Computer Science (STACS). LNCS, vol. 1770, pp. 290–301.
Springer, Heidelberg (2000)

112. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solv-
ing parity games. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 117–
123. ACM/SIAM, New York/Philadelphia (2006)

113. Katz, G., Peled, D.: Synthesizing solutions to the leader election problem using model
checking and genetic programming. In: Intl. Haifa Verification Conference (HVC). LNCS,
vol. 6405, pp. 117–132. Springer, Heidelberg (2009)

114. Kitzelmann, E.: Inductive programming: a survey of program synthesis techniques. In: Intl.
Workshop on Approaches and Applications of Inductive Programming (AAIP), pp. 50–73
(2009)

115. Klein, U., Piterman, N., Pnueli, A.: Effective synthesis of asynchronous systems from GR(1)
specifications. In: Intl. Conf. on Verification, Model Checking and Abstract Interpretation
(VMCAI). LNCS, vol. 7148, pp. 283–298. Springer, Heidelberg (2012)

116. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Complete functional synthesis. In: Conf. on
Programming Language Design and Implementation (PLDI), pp. 316–329. ACM, New York
(2010)

117. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In: Intl. Conf.
on Computer-Aided Verification (CAV). LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg
(2006)

118. Kupferman, O., Vardi, M.: Synthesis with incomplete information. In: 2nd International Con-
ference on Temporal Logic, Manchester, pp. 91–106 (1997)

119. Kupferman, O., Vardi, M.: Weak alternating automata and tree automata emptiness. In: An-
nual ACM Symposium on Theory of Computing (STOC), pp. 224–233. ACM, New York
(1998)

120. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Annual Symp. on Founda-
tions of Computer Science (FOCS), pp. 531–542. IEEE, Piscataway (2005)

121. Madusudan, P.: Control and synthesis of open reactive systems. Ph.D. thesis, Theoretical
Computer Science Group, Institute of Mathematical Sciences, University of Madras (2001)

122. Maidl, M.: The common fragment of CTL and LTL. In: Annual Symp. on Foundations of
Computer Science (FOCS), pp. 643–652. IEEE, Piscataway (2000)

123. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed sys-
tems. In: Annual Symposium on Theoretical Aspects of Computer Science (STACS). LNCS,
vol. 900, pp. 229–242. Springer, Heidelberg (1995)

124. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer, Heidelberg (1992)

125. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer, Heidelberg
(1995)

126. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic specifica-
tions. Trans. Program. Lang. Syst. 6(1), 68–93 (1984)

960 R. Bloem et al.

127. Martin, D.: The determinacy of Blackwell games. J. Symb. Log. 63(4), 1565–1581 (1998)
128. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Log. 65, 149–184

(1993)
129. Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. Theor. Comput. Sci.

32, 321–330 (1984)
130. Mogavero, F., Murano, A., Sauro, L.: On the boundary of behavioral strategies. In: Symp. on

Logic in Computer Science (LICS), pp. 263–272 (2013)
131. Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: Annual Conf. on

Foundations of Software Technology and Theoretical Computer Science (FSTTCS). LIPIcs,
vol. 8, pp. 133–144 (2010)

132. Morgenstern, A.: Symbolic controller synthesis for LTL specifications. Ph.D. thesis, TU
Kaiserslautern (2010)

133. Mostowski, A.: Regular expressions for infinite trees and a standard form of automata. In:
Symposium on Computation Theory. LNCS, vol. 208, pp. 157–168. Springer, Heidelberg
(1984)

134. Muller, D.E., Schupp, P.E.: Alternating automata on infinite objects, determinacy and Rabin’s
theorem. In: Automata on Infinite Words. LNCS, vol. 192, pp. 100–107. Springer, Heidelberg
(1984)

135. Nain, S., Vardi, M.Y.: Solving partial-information stochastic parity games. In: Symp. on
Logic in Computer Science (LICS), pp. 341–348. IEEE, Piscataway (2013)

136. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes. Math.
Oper. Res. 12, 441–450 (1987)

137. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity au-
tomata. In: Symp. on Logic in Computer Science (LICS), pp. 255–264. IEEE, Seattle (2006)

138. Piterman, N., Pnueli, A.: Faster solution of Rabin and Streett games. In: Symp. on Logic in
Computer Science (LICS), pp. 275–284. IEEE, Piscataway (2006)

139. Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In: Clarke, E.M., Hen-
zinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg
(2018)

140. Piterman, N., Pnueli, A., Sa´ar, Y.: Synthesis of reactive(1) designs. In: Intl. Conf. on Veri-
fication, Model Checking and Abstract Interpretation (VMCAI). LNCS, vol. 3855, pp. 364–
380. Springer, Heidelberg (2006)

141. Pnueli, A.: The temporal logic of programs. In: Annual Symp. on Foundations of Computer
Science (FOCS), pp. 46–57. IEEE, Piscataway (1977)

142. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Symp. on Principles of
Programming Languages (POPL), pp. 179–190. ACM, New York (1989)

143. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In: Intl. Collo-
quium on Automata, Languages and Programming (ICALP). LNCS, vol. 372, pp. 652–671.
Springer, Heidelberg (1989)

144. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Annual Symp.
on Foundations of Computer Science (FOCS), pp. 746–757. IEEE, Piscataway (1990)

145. Puchala, B.: Asynchronous omega-regular games with partial information. In: Intl. Symp. on
Mathematical Foundations of Computer Science (MFCS). LNCS, vol. 6281, pp. 592–603.
Springer, Heidelberg (2010)

146. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans.
Am. Math. Soc. 141, 1–35 (1969)

147. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes.
SIAM J. Control Optim. 25, 206–230 (1987)

148. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proc. IEEE 77,
81–98 (1989)

149. Reif, J.H.: Universal games of incomplete information. In: Annual ACM Symposium on
Theory of Computing (STOC), pp. 288–308. ACM, New York (1979)

150. Rosner, R.: Modular synthesis of reactive systems. Ph.D. thesis, Weizmann Institute of Sci-
ence (1992)

27 Graph Games and Reactive Synthesis 961

151. Safra, S.: On the complexity of ω-automata. In: Annual Symp. on Foundations of Computer
Science (FOCS), pp. 319–327. IEEE, Piscataway (1988)

152. Schewe, S.: Synthesis for probabilistic environments. In: Intl. Symp. Automated Technology
for Verification and Analysis (ATVA). LNCS, vol. 4218, pp. 245–259. Springer, Heidelberg
(2006)

153. Schewe, S.: Solving parity games in big steps. In: Annual Conf. on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS). LNCS, vol. 4855, pp. 449–460.
Springer, Heidelberg (2007)

154. Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff games.
In: Annual Conf. on Computer Science Logic (CSL). LNCS, vol. 5213, pp. 369–384.
Springer, Heidelberg (2008)

155. Schewe, S., Finkbeiner, B.: Synthesis of asynchronous systems. In: Intl. Sym. on Logic-
Based Program Synthesis and Transformation, 16th International (LOPSTR). LNCS,
vol. 4407, pp. 127–142. Springer, Heidelberg (2006)

156. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Intl. Symp. Automated Technology for
Verification and Analysis (ATVA). LNCS, vol. 4762, pp. 474–488. Springer, Heidelberg
(2007)

157. Schneider, K.: Improving automata generation for linear temporal logic by considering the
automaton hierarchy. In: Intl. Conf. on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR). LNCS, vol. 2250, pp. 39–54. Springer, Heidelberg (2001)

158. Sebastiani, R., Tonetta, S.: “More deterministic” vs. “smaller” Büchi automata for efficient
LTL model checking. In: Correct Hardware Design and Verification Methods (CHARME).
LNCS, vol. 2860, pp. 126–140. Springer, Heidelberg (2003)

159. Shapley, L.: Stochastic games. Proc. Natl. Acad. Sci. USA 39, 1095–1100 (1953)
160. Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for LTL games. In: Formal Meth-

ods in Computer Aided Design (FMCAD), pp. 77–84. IEEE, Piscataway (2009)
161. Solar-Lezama, A., Jones, C.G., Bodík, R.: Sketching concurrent data structures. In: Conf. on

Programming Language Design and Implementation (PLDI), pp. 136–148. ACM, New York
(2008)

162. Solar-Lezama, A., Rabbah, R.M., Bodík, R., Ebcioglu, K.: Programming by sketching for
bit-streaming programs. In: Conf. on Programming Language Design and Implementation
(PLDI), pp. 281–294. ACM, New York (2005)

163. Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat, V.A.: Combinatorial sketch-
ing for finite programs. In: Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 404–415. ACM, New York (2006)

164. Somenzi, F.: Colorado University Decision Diagram Package (1998). http://vlsi.colorado.
edu/~fabio/CUDD/

165. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Intl. Conf. on
Computer-Aided Verification (CAV). LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg
(2000)

166. Stockmeyer, L.: The complexity of decision problems in automata theory and logic. Ph.D.
thesis, Massachusetts Institute of Technology (1974)

167. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, vol. B, pp. 133–191. Elsevier, Amsterdam (1990)

168. Thomas, W.: On the synthesis of strategies in infinite games. In: Annual Symposium on
Theoretical Aspects of Computer Science (STACS). LNCS, vol. 900, pp. 1–13. Springer,
Heidelberg (1995)

169. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Hand-
book of Formal Languages, vol. 3, pp. 389–455. Springer, Heidelberg (1997). Beyond Words,
Chap. 7

170. Vardi, M.Y.: An automata-theoretic approach to fair realizability and synthesis. In: Intl. Conf.
on Computer-Aided Verification (CAV). LNCS, vol. 939, pp. 267–278. Springer, Heidelberg
(1995)

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

962 R. Bloem et al.

171. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37
(1994)

172. Vechev, M.T., Yahav, E., Yorsh, G.: Inferring synchronization under limited observability. In:
Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
LNCS, vol. 5505, pp. 139–154. Springer, Heidelberg (2009)

173. Vechev, M.T., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchronization. In:
Symp. on Principles of Programming Languages (POPL), pp. 327–338. ACM, New York
(2010)

174. Velner, Y., Rabinovich, A.: Church synthesis problem for noisy input. In: Intl. Conf. on Foun-
dations of Software Science and Computational Structures (FoSSaCS). LNCS, vol. 6604,
pp. 275–289. Springer, Heidelberg (2011)

175. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games.
In: Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 1855, pp. 202–215.
Springer, Heidelberg (2000)

176. Walukiewicz, I.: Pushdown processes: games and model checking. In: Intl. Conf. on
Computer-Aided Verification (CAV). LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg
(1996)

177. Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput. 164(2),
234–263 (2001)

178. Walukiewicz, I.: A landscape with games in the background. In: Symp. on Logic in Computer
Science (LICS), pp. 356–366. IEEE, Piscataway (2004)

179. Wang, Y., Lafortune, S., Kelly, T., Kudlur, M., Mahlke, S.A.: The theory of deadlock avoid-
ance via discrete control. In: Symp. on Principles of Programming Languages (POPL),
pp. 252–263. ACM, New York (2009)

180. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

181. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput.
Sci. 158, 343–359 (1996)

	Chapter 27: Graph Games and Reactive Synthesis
	27.1 Introduction
	27.2 Theory of Graph-Based Games
	27.2.1 Game Graphs and Strategies
	27.2.2 Objectives
	27.2.3 Winning and Optimal Strategies; Decision Problems
	27.2.4 Complexity and Algorithms for Graph Games with Qualitative Objectives
	27.2.5 Complexity and Algorithms for Graph Games with Quantitative Objectives
	27.2.6 Reducibility Between Graph Games
	27.2.7 Extensions

	27.3 Reactive Synthesis
	27.3.1 Introduction
	27.3.2 Games, Transducers, Trees, and Automata
	27.3.3 Realizability and Synthesis Problem
	27.3.4 Classical Approach to LTL Synthesis
	Step 1: LTL to NBW
	Step 2: NBW to DPW
	Step 3: DPW to DPT
	Step 4: DPT Emptiness Check
	Step 5: Construction of Finite-State Transducer

	27.3.5 Recent Approaches to LTL Synthesis
	27.3.5.1 Bounded (or Safraless) Approaches
	Step 1: LTL to UCT
	Step 2: UCT to k-UCT
	Step 3: k-UCT Emptiness Check
	Step 4: System Construction

	27.3.5.2 Approaches for Fragments of LTL

	27.4 Related Topics
	References

